如何用 Python 科学计算中的矩阵替代循环?
程序员文章站
2022-05-31 12:55:21
...
比如求一个平面稳态导热问题,控制方程就是拉普拉斯方程:
(我才发现原来有[插入公式]这个功能)
按照最简单的毅种循环来写就是:
def laplace(u): nx, ny = u.shape for i in xrange(1,nx-1): for j in xrange(1, ny-1): u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2))
你们都不知道numexpr的么←_←
比numpy还黑的科技→_→
虽然能用的运算没多少吧但是对大矩阵的整体运算还是很快的←_←
最近正好在学numpy这个模块。题主可以看看这个教程,不是很全,但是科学计算方面还是有不少东西的:NumPy-快速处理数据
引用教程中的代码:
import time import math import numpy as np x = [i * 0.001 for i in xrange(1000000)] # 初始化数组0.000~999.999 start = time.clock() for i, t in enumerate(x): # 用循环计算正弦值 x[i] = math.sin(t) print "math.sin:", time.clock() - start x = [i * 0.001 for i in xrange(1000000)] x = np.array(x) # 初始化矩阵(这里是一维) start = time.clock() np.sin(x,x) # numpy的广播计算(代替循环) print "numpy.sin:", time.clock() - start # 输出 # math.sin: 1.15426932753 # numpy.sin: 0.0882399858083
用numpy, Cython, 或者 weave
Speed up Python
SciPy官网有关于如何提高Python Performance的教程
PerformancePython
用Pyrex/Cython或者weave基本上可以达到C++的速度。
Laplace的例子,500*500矩阵,100次循环。
numpy和pandas.DataFrame的矩阵运算可以广播,可以map。
第一个技巧是,用map和lambda表达式来生成你要的迭代参数,比如生成一个平方表:map(lambda x: x*x, xrange(100)),这是个黑科技,可以很快速的生成你需要的循环参数;
第二个技巧是,熟练使用矩阵掩膜(mask)来简化循环,比如把矩阵a中小于100的值都置零:a[a<100] = 0,比循环快很多;
第三个技巧是,多使用各种库,如numpy, scipy(signal库简直好顶赞),如果你做图像,opencv库是唯一的选择。
大致是这样,实际应用中更多的是前两个trick混合使用。
想要快,就内嵌C,Python是解释性语言,会比较慢。
有成熟的计算软件时用的C/C+++python的模式,核心算法和耗时最多的逻辑用C/C++,其他用python.