欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

植物背景与前景分割

程序员文章站 2022-05-31 10:50:36
...
# -*- coding: utf-8 -*- 
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 使用2g-r-b分离土壤与背景

src = cv2.imread('E:/20200712/IMG_20200712_100857.jpg')
cv2.imshow('src', src)

# 转换为浮点数进行计算
fsrc = np.array(src, dtype=np.float32) / 255.0
(b,g,r) = cv2.split(fsrc)
gray = 2 * g - b - r

# 求取最大值和最小值
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)

# 计算直方图
hist = cv2.calcHist([gray], [0], None, [256], [minVal, maxVal])
plt.plot(hist)
plt.show()
cv2.waitKey()

# 转换为u8类型,进行otsu二值化
gray_u8 = np.array((gray - minVal) / (maxVal - minVal) * 255, dtype=np.uint8)
(thresh, bin_img) = cv2.threshold(gray_u8, -1.0, 255, cv2.THRESH_OTSU)
# plt.savefig("C:/Users/Admin/Desktop/1.jpg")
cv2.imwrite('C:/Users/Admin/Desktop/1.jpg',bin_img,[int(cv2.IMWRITE_PNG_COMPRESSION),9])
cv2.imshow('bin_img', bin_img)

# 得到彩色的图像
(b8, g8, r8) = cv2.split(src)
color_img = cv2.merge([b8 & bin_img, g8 & bin_img, r8 & bin_img])
cv2.imwrite('C:/Users/Admin/Desktop/2.jpg',color_img,[int(cv2.IMWRITE_PNG_COMPRESSION),9])
cv2.imshow('color_img', color_img)

植物背景与前景分割植物背景与前景分割

植物背景与前景分割