学习OpenMV
程序员文章站
2022-05-30 13:13:56
输出print列表Listif如果相等则是==求积**求和要先给sum赋值 初始为0for 变量 in range(100)sum=sum+变量最后要print(sum)才能得到最后的值for循环 and while循环for+变量+in range(范围,终值值,步长值):函数定义def 函数名(参数):功能语句return 返回值......
在这里插入代码片
#学习OpenMV 2020.7.23
输出print
列表List
if如果相等则是==
幂运算**
累加要先给存储的变量赋初值 初始为0
for 变量 in range(100)
sum=sum+变量
最后要print(sum)才能得到最后的值
for循环 and while循环
for+变量+in range(范围,终值值,步长值):
函数定义
def 函数名(参数):
功能语句
return 返回值
下面展示一些 内联代码片
。
```python
# Single Color RGB565 Blob Tracking Example
#
# This example shows off single color RGB565 tracking using the OpenMV Cam.
import sensor, image, time, math
threshold_index = 0 # 0 for red, 1 for green, 2 for blue
# Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max)
# The below thresholds track in general red/green/blue things. You may wish to tune them...
thresholds = [(30, 100, 15, 127, 15, 127), # generic_red_thresholds
(30, 100, -64, -8, -32, 32), # generic_green_thresholds
(0, 30, 0, 64, -128, 0)] # generic_blue_thresholds
sensor.reset() #初始化相机传感器
sensor.set_pixformat(sensor.RGB565)#设置相机的传感器模式
sensor.set_framesize(sensor.QVGA)#设置相机模块帧的大小
sensor.skip_frames(time = 2000)#跳过2000毫秒的帧
sensor.set_auto_gain(False) # must be turned off for color tracking #关闭自动增益
sensor.set_auto_whitebal(False) # must be turned off for color tracking
clock = time.clock()# 关闭自动白平衡
# Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are
# returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the
# camera resolution. "merge=True" merges all overlapping blobs in the image.
while(True):
clock.tick()
img = sensor.snapshot()
for blob in img.find_blobs([thresholds[threshold_index]], pixels_threshold=200, area_threshold=200, merge=True):
# These values depend on the blob not being circular - otherwise they will be shaky.
if blob.elongation() > 0.5:
img.draw_edges(blob.min_corners(), color=(255,0,0))
img.draw_line(blob.major_axis_line(), color=(0,255,0))
img.draw_line(blob.minor_axis_line(), color=(0,0,255))
# These values are stable all the time.
img.draw_rectangle(blob.rect())#在图像上绘制一个矩形
img.draw_cross(blob.cx(), blob.cy())#在图像上绘制一个十字
# Note - the blob rotation is unique to 0-180 only.
img.draw_keypoints([(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=20)
print(clock.fps())#在图像上绘制关键点
本文地址:https://blog.csdn.net/duan_lian_jia/article/details/107529627
推荐阅读
-
Docker学习之搭建ActiveMQ消息服务的方法步骤
-
JavaScript BOM学习
-
ror 空间 博客分类: 学习 Rails应用服务器RubySSHSVN
-
Maven学习-入门 博客分类: maven
-
Spring学习(二)---在IoC容器中装配Bean 博客分类: Spring 3.x 企业应用开发笔记 springbeanioc框架
-
Maven学习-汇总 博客分类: maven
-
Maven学习-汇总 博客分类: maven
-
Spring学习[1] - 概述 博客分类: Spring Spring概述Spring学习Spring入门
-
Maven学习-入门 博客分类: maven
-
PHP开发学习门户第三版UI正式上线