欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

(转)Java Cache系列之Cache概述和Simple Cache

程序员文章站 2022-05-30 12:06:55
...
该文章转自http://www.blogjava.net/DLevin/archive/2013/10/15/404770.html,仅用于学习和收藏。


前记:最近公司在做的项目完全基于Cache(Gemfire)构建了一个类数据库的系统,自己做的一个小项目里用过Guava的Cache,以前做过的项目中使用过EHCache,既然和Cache那么有缘,那就趁这个机会好好研究一下Java中的Cache库。在Java社区中已经提供了很多Cache库实现,具体可以参考http://www.open-open.com/13.htm,这里只关注自己用到的几个Cache库而且这几个库都比较具有代表性:Guava中提供的Cache是基于单JVM的简单实现;EHCache出自Hibernate,也是基于单JVM的实现,是对单JVM Cache比较完善的实现;而Gemfire则提供了对分布式Cache的完善实现。这一系列的文章主要关注在这几个Cache系统的实现上,因而步探讨关于Cache的好处、何时用Cache等问题,由于他们都是基于内存的Cache,因而也仅局限于这种类型的Cache(说实话,我不知道有没有其他的Cache系统,比如基于文件?囧)。

记得我最早接触Cache是在大学学计算机组成原理的时候,由于CPU的速度要远大于内存的读取速度,为了提高CPU的效率,CPU会在内部提供缓存区,该缓存区的读取速度和CPU的处理速度类似,CPU可以直接从缓存区中读取数据,从而解决CPU的处理速度和内存读取速度不匹配的问题。缓存之所以能解决这个问题是基于程序的局部性原理,即”程序在执行时呈现出局部性规律,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。局部性原理又表现为:时间局部性和空间局部性。时间局部性是指如果程序中的某条指令一旦执行,则不久之后该指令可能再次被执行;如果某数据被访问,则不久之后该数据可能再次被访问。空间局部性是指一旦程序访问了某个存储单元,则不久之后。其附近的存储单元也将被访问。”在实际工作中,CPU先向缓存区读取数据,如果缓存区已存在,则读取缓存中的数据(命中),否则(失效),将内存中相应数据块载入缓存中,以提高接下来的访问速度。由于成本和CPU大小的限制,CPU只能提供有限的缓存区,因而缓存区的大小是衡量CPU性能的重要指标之一。

使用缓存,在CPU向内存更新数据时需要处理一个问题(写回策略问题),即CPU在更新数据时只更新缓存的数据(write back,写回,当缓存需要被替换时才将缓存中更新的值写回内存),还是CPU在更新数据时同时更新缓存中和内存中的数据(write through,写通)。在写回策略中,为了减少内存写操作,缓存块通常还设有一个脏位(dirty bit),用以标识该块在被载入之后是否发生过更新。如果一个缓存块在被置换回内存之前从未被写入过,则可以免去回写操作;写回的优点是节省了大量的写操作。这主要是因为,对一个数据块内不同单元的更新仅需一次写操作即可完成。这种内存带宽上的节省进一步降低了能耗,因此颇适用于嵌入式系统。写通策略由于要经常和内存交互(有些CPU设计会在中间提供写缓冲器以缓解性能),因而性能较差,但是它实现简单,而且能简单的维持数据一致性。

在软件的缓存系统中,一般是为了解决内存的访问速率和磁盘、网络、数据库(属于磁盘或网络访问,单独列出来因为它的应用比较广泛)等访问速率不匹配的问题(对于内存缓存系统来说)。但是由于内存大小和成本的限制,我们又不能把所有的数据先加载进内存来。因而如CPU中的缓存,我们只能先将一部分数据保存在缓存中。此时,对于缓存,我们一般要解决如下需求:
使用给定Key从Cache中读取Value值。CPU是通过内存地址来定位内存已获取相应内存中的值,类似的在软件Cache中,需要通过某个Key值来标识相关的值。因而可以简单的认为软件中的Cache是一个存储键值对的Map,比如Gemfire中的Region就继承自Map,只是Cache的实现更加复杂。
当给定的Key在当前Cache不存在时,程序员可以通过指定相应的逻辑从其他源(如数据库、网络等源)中加载该Key对应的Value值,同时将该值返回。在CPU中,基于程序局部性原理,一般是默认的加载接下来的一段内存块,然而在软件中,不同的需求有不同的加载逻辑,因而需要用户自己指定对应的加载逻辑,而且一般来说也很难预知接下来要读取的数据,所以只能一次只加载一条纪录(对可预知的场景下当然可以批量加载数据,只是此时需要权衡当前操作的响应时间问题)。
可以向Cache中写入Key-Value键值对(新增的纪录或对原有的键值对的更新)。就像CPU的写回策略中有写回和写通策略,有些Cache系统提供了写通接口。如果没有提供写通接口,程序员需要额外的逻辑处理写通策略。也可以如CPU中的Cache一样,只当相应的键值对移出Cache以后,再将值写回到数据源,可以提供一个标记位以决定要不要写回(不过感觉这种实现比较复杂,代码的的耦合度也比较高,如果为提升写的速度,采用异步写回即可,为防止数据丢失,可以使用Queue来存储)。
将给定Key的键值对移出Cache(或给定多个Key以批量移除,甚至清除整个Cache)。
配置Cache的最大使用率,当Cache超过该使用率时,可配置溢出策略
直接移除溢出的键值对。在移除时决定是否要写回已更新的数据到数据源。
将溢出的溢出的键值对写到磁盘中。在写磁盘时需要解决如何序列化键值对,如何存储序列化后的数据到磁盘中,如何布局磁盘存储,如何解决磁盘碎片问题,如何从磁盘中找回相应的键值对,如何读取磁盘中的数据并方序列化,如何处理磁盘溢出等问题。
在溢出策略中,除了如何处理溢出的键值对问题,还需要处理如何选择溢出的键值对问题。这有点类似内存的页面置换算法(其实内存也可以看作是对磁盘的Cache),一般使用的算法有:先进先出(FIFO)、最近最少使用(LRU)、最少使用(LFU)、Clock置换(类LRU)、工作集等算法。
对Cache中的键值对,可以配置其生存时间,以处理某些键值对在长时间不被使用,但是又没能溢出的问题(因为溢出策略的选择或者Cache没有到溢出阶段),以提前释放内存。
对某些特定的键值对,我们希望它能一直留在内存中不被溢出,有些Cache系统提供PIN配置(动态或静态),以确保该键值对不会被溢出。
提供Cache状态、命中率等统计信息,如磁盘大小、Cache大小、平均查询时间、每秒查询次数、内存命中次数、磁盘命中次数等信息。
提供注册Cache相关的事件处理器,如Cache的创建、Cache的销毁、一条键值对的添加、一条键值对的更新、键值对溢出等事件。
由于引入Cache的目的就是为了提升程序的读写性能,而且一般Cache都需要在多线程环境下工作,因而在实现时一般需要保证线程安全,以及提供高效的读写性能。
在Java中,Map是最简单的Cache,为了高效的在多线程环境中使用,可以使用ConcurrentHashMap,这也正是我之前参与的一个项目中最开始的实现(后来引入EHCache)。为了语意更加清晰、保持接口的简单,下面我实现了一个基于Map的最简单的Cache系统,用以演示Cache的基本使用方式。用户可以向它提供数据、查询数据、判断给定Key的存在性、移除给定的Key(s)、清除整个Cache等操作。以下是Cache的接口定义。

public interface Cache<K, V> {
    public String getName();
    public V get(K key);
    public Map<? extends K, ? extends V> getAll(Iterator<? extends K> keys);
    public boolean isPresent(K key);
    public void put(K key, V value);
    public void putAll(Map<? extends K, ? extends V> entries);
    public void invalidate(K key);
    public void invalidateAll(Iterator<? extends K> keys);
    public void invalidateAll();
    public boolean isEmpty();
    public int size();
    public void clear();
    public Map<? extends K, ? extends V> asMap();
}


这个简单的Cache实现只是对HashMap的封装,之所以选择HashMap而不是ConcurrentHashMap是因为在ConcurrentHashMap无法实现getAll()方法;并且这里所有的操作我都加锁了,因而也不需要ConcurrentHashMap来保证线程安全问题;为了提升性能,我使用了读写锁,以提升并发查询性能。因为代码比较简单,所以把所有代码都贴上了(懒得整理了。。。。)。

public class CacheImpl<K, V> implements Cache<K, V> {
    private final String name;
    private final HashMap<K, V> cache;
    private final ReadWriteLock lock = new ReentrantReadWriteLock();
    private final Lock readLock = lock.readLock();
    private final Lock writeLock = lock.writeLock();
    
    public CacheImpl(String name) {
        this.name = name;
        cache = new HashMap<K, V>();
    }
    
    public CacheImpl(String name, int initialCapacity) {
        this.name = name;
        cache = new HashMap<K, V>(initialCapacity);
    }
    
    public String getName() {
        return name;
    }

    public V get(K key) {
        readLock.lock();
        try {
            return cache.get(key);
        } finally {
            readLock.unlock();
        }
    }

    public Map<? extends K, ? extends V> getAll(Iterator<? extends K> keys) {
        readLock.lock();
        try {
            Map<K, V> map = new HashMap<K, V>();
            List<K> noEntryKeys = new ArrayList<K>();
            while(keys.hasNext()) {
                K key = keys.next();
                if(isPresent(key)) {
                    map.put(key, cache.get(key));
                } else {
                    noEntryKeys.add(key);
                }
            }
            
            if(!noEntryKeys.isEmpty()) {
                throw new CacheEntriesNotExistException(this, noEntryKeys);
            }
            
            return map;
        } finally {
            readLock.unlock();
        }
    }

    public boolean isPresent(K key) {
        readLock.lock();
        try {
            return cache.containsKey(key);
        } finally {
            readLock.unlock();
        }
    }

    public void put(K key, V value) {
        writeLock.lock();
        try {
            cache.put(key, value);
        } finally {
            writeLock.unlock();
        }
    }

    public void putAll(Map<? extends K, ? extends V> entries) {
        writeLock.lock();
        try {
            cache.putAll(entries);
        } finally {
            writeLock.unlock();
        }
    }

    public void invalidate(K key) {
        writeLock.lock();
        try {
            if(!isPresent(key)) {
                throw new CacheEntryNotExistsException(this, key);
            }
            cache.remove(key);
        } finally {
            writeLock.unlock();
        }
    }

    public void invalidateAll(Iterator<? extends K> keys) {
        writeLock.lock();
        try {
            List<K> noEntryKeys = new ArrayList<K>();
            while(keys.hasNext()) {
                K key = keys.next();
                if(!isPresent(key)) {
                    noEntryKeys.add(key);
                }
            }
            if(!noEntryKeys.isEmpty()) {
                throw new CacheEntriesNotExistException(this, noEntryKeys);
            }
            
            while(keys.hasNext()) {
                K key = keys.next();
                invalidate(key);
            }
        } finally {
            writeLock.unlock();
        }
    }

    public void invalidateAll() {
        writeLock.lock();
        try {
            cache.clear();
        } finally {
            writeLock.unlock();
        }
    }

    public int size() {
        readLock.lock();
        try {
            return cache.size();
        } finally {
            readLock.unlock();
        }
    }

    public void clear() {
        writeLock.lock();
        try {
            cache.clear();
        } finally {
            writeLock.unlock();
        }
    }

    public Map<? extends K, ? extends V> asMap() {
        readLock.lock();
        try {
            return new ConcurrentHashMap<K, V>(cache);
        } finally {
            readLock.unlock();
        }
    }

    public boolean isEmpty() {
        readLock.lock();
        try {
            return cache.isEmpty();
        } finally {
            readLock.unlock();
        }
    }

}


其简单的使用用例如下:

    @Test
    public void testCacheSimpleUsage() {
        Book uml = bookFactory.createUMLDistilled();
        Book derivatives = bookFactory.createDerivatives();
        
        String umlBookISBN = uml.getIsbn();
        String derivativesBookISBN = derivatives.getIsbn();
        
        Cache<String, Book> cache = cacheFactory.create("book-cache");
        cache.put(umlBookISBN, uml);
        cache.put(derivativesBookISBN, derivatives);
        
        Book fetchedBackUml = cache.get(umlBookISBN);
        System.out.println(fetchedBackUml);
        
        Book fetchedBackDerivatives = cache.get(derivativesBookISBN);
        System.out.println(fetchedBackDerivatives);
    }
相关标签: cache java