小米5s微信跳一跳小程序python源码
程序员文章站
2022-05-30 08:15:41
本文实例为大家分享了微信跳一跳小程序python源码,供大家参考,具体内容如下
微信跳一跳小程序小米5s源码python,搭建环境后亲测可用。
# coding...
本文实例为大家分享了微信跳一跳小程序python源码,供大家参考,具体内容如下
微信跳一跳小程序小米5s源码python,搭建环境后亲测可用。
# coding: utf-8 import os import sys import subprocess import shutil import time import math from PIL import Image, ImageDraw import random import json import re # === 思路 === # 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标, # 根据两个点的距离乘以一个时间系数获得长按的时间 # 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历, # 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点, # 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标 # 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线, # 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点, # 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心, # 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标 # 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离) # TODO: 解决定位偏移的问题 # TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正 # TODO: 一些固定值根据截图的具体大小计算 # TODO: 直接用 X 轴距离简化逻辑 def open_accordant_config(): screen_size = _get_screen_size() config_file = "{path}/config/{screen_size}/config.json".format( path=sys.path[0], screen_size=screen_size ) if os.path.exists(config_file): with open(config_file, 'r') as f: print("Load config file from {}".format(config_file)) return json.load(f) else: with open('{}/config/default.json'.format(sys.path[0]), 'r') as f: print("Load default config") return json.load(f) def _get_screen_size(): size_str = os.popen('adb shell wm size').read() m = re.search('(\d+)x(\d+)', size_str) if m: width = m.group(1) height = m.group(2) return "{height}x{width}".format(height=height, width=width) config = open_accordant_config() # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置 under_game_score_y = 300 press_coefficient = 1.47 # 长按的时间系数,请自己根据实际情况调节 piece_base_height_1_2 = 25 # 二分之一的棋子底座高度,可能要调节 piece_body_width = 80 # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节 # 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标 if config.get('swipe'): swipe = config['swipe'] else: swipe = {} swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410 screenshot_backup_dir = 'screenshot_backups/' if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) def pull_screenshot(): process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE) screenshot = process.stdout.read() if sys.platform == 'win32': screenshot = screenshot.replace(b'\r\n', b'\n') f = open('autojump.png', 'wb') f.write(screenshot) f.close() def backup_screenshot(ts): # 为了方便失败的时候 debug if not os.path.isdir(screenshot_backup_dir): os.mkdir(screenshot_backup_dir) shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts)) def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y): draw = ImageDraw.Draw(im) # 对debug图片加上详细的注释 draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3) draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0)) draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0)) draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255)) draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255)) draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0)) draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255)) del draw im.save('{}{}_d.png'.format(screenshot_backup_dir, ts)) def set_button_position(im): # 将swipe设置为 `再来一局` 按钮的位置 global swipe_x1, swipe_y1, swipe_x2, swipe_y2 w, h = im.size left = w / 2 top = 1003 * (h / 1280.0) + 10 swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top def jump(distance): if distance < 400: distance = 0.9 * distance + 50 else: distance = 0.85 * distance + 80 press_time = distance * press_coefficient press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间 press_time = int(press_time) cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format( x1=swipe['x1'], y1=swipe['y1'], x2=swipe['x2'], y2=swipe['y2'], duration=press_time ) print(cmd) os.system(cmd) # 转换色彩模式hsv2rgb def hsv2rgb(h, s, v): h = float(h) s = float(s) v = float(v) h60 = h / 60.0 h60f = math.floor(h60) hi = int(h60f) % 6 f = h60 - h60f p = v * (1 - s) q = v * (1 - f * s) t = v * (1 - (1 - f) * s) r, g, b = 0, 0, 0 if hi == 0: r, g, b = v, t, p elif hi == 1: r, g, b = q, v, p elif hi == 2: r, g, b = p, v, t elif hi == 3: r, g, b = p, q, v elif hi == 4: r, g, b = t, p, v elif hi == 5: r, g, b = v, p, q r, g, b = int(r * 255), int(g * 255), int(b * 255) return r, g, b # 转换色彩模式rgb2hsv def rgb2hsv(r, g, b): r, g, b = r/255.0, g/255.0, b/255.0 mx = max(r, g, b) mn = min(r, g, b) df = mx-mn if mx == mn: h = 0 elif mx == r: h = (60 * ((g-b)/df) + 360) % 360 elif mx == g: h = (60 * ((b-r)/df) + 120) % 360 elif mx == b: h = (60 * ((r-g)/df) + 240) % 360 if mx == 0: s = 0 else: s = df/mx v = mx return h, s, v def find_piece_and_board(im): w, h = im.size piece_x_sum = 0 piece_x_c = 0 piece_y_max = 0 board_x = 0 board_y = 0 left_value = 0 left_count = 0 right_value = 0 right_count = 0 from_left_find_board_y = 0 from_right_find_board_y = 0 scan_x_border = int(w / 8) # 扫描棋子时的左右边界 scan_start_y = 0 # 扫描的起始y坐标 im_pixel=im.load() # 以50px步长,尝试探测scan_start_y for i in range(int(h / 3), int( h*2 /3 ), 50): last_pixel = im_pixel[0,i] for j in range(1, w): pixel=im_pixel[j,i] # 不是纯色的线,则记录scan_start_y的值,准备跳出循环 if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]: scan_start_y = i - 50 break if scan_start_y: break print('scan_start_y: ', scan_start_y) # 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3 for i in range(scan_start_y, int(h * 2 / 3)): for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销 pixel = im_pixel[j,i] # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来 if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110): piece_x_sum += j piece_x_c += 1 piece_y_max = max(i, piece_y_max) if not all((piece_x_sum, piece_x_c)): return 0, 0, 0, 0 piece_x = piece_x_sum / piece_x_c piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半 for i in range(int(h / 3), int(h * 2 / 3)): last_pixel = im_pixel[0, i] # 计算阴影的RGB值,通过photoshop观察,阴影部分其实就是背景色的明度V 乘以0.7的样子 h, s, v = rgb2hsv(last_pixel[0], last_pixel[1], last_pixel[2]) r, g, b = hsv2rgb(h, s, v * 0.7) if from_left_find_board_y and from_right_find_board_y: break if not board_x: board_x_sum = 0 board_x_c = 0 for j in range(w): pixel = im_pixel[j,i] # 修掉脑袋比下一个小格子还高的情况的 bug if abs(j - piece_x) < piece_body_width: continue # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来 if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10: board_x_sum += j board_x_c += 1 if board_x_sum: board_x = board_x_sum / board_x_c else: # 继续往下查找,从左到右扫描,找到第一个与背景颜色不同的像素点,记录位置 # 当有连续3个相同的记录时,表示发现了一条直线 # 这条直线即为目标board的左边缘 # 然后当前的 y 值减 3 获得左边缘的第一个像素 # 就是顶部的左边顶点 for j in range(w): pixel = im_pixel[j, i] # 修掉脑袋比下一个小格子还高的情况的 bug if abs(j - piece_x) < piece_body_width: continue if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10): if left_value == j: left_count = left_count+1 else: left_value = j left_count = 1 if left_count > 3: from_left_find_board_y = i - 3 break # 逻辑跟上面类似,但是方向从右向左 # 当有遮挡时,只会有一边有遮挡 # 算出来两个必然有一个是对的 for j in range(w)[::-1]: pixel = im_pixel[j, i] # 修掉脑袋比下一个小格子还高的情况的 bug if abs(j - piece_x) < piece_body_width: continue if (abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10) and (abs(pixel[0] - r) + abs(pixel[1] - g) + abs(pixel[2] - b) > 10): if right_value == j: right_count = left_count + 1 else: right_value = j right_count = 1 if right_count > 3: from_right_find_board_y = i - 3 break # 如果顶部像素比较多,说明图案近圆形,相应的求出来的值需要增大,这里暂定增大顶部宽的三分之一 if board_x_c > 5: from_left_find_board_y = from_left_find_board_y + board_x_c / 3 from_right_find_board_y = from_right_find_board_y + board_x_c / 3 # 按实际的角度来算,找到接近下一个 board 中心的坐标 这里的角度应该是30°,值应该是tan 30°,math.sqrt(3) / 3 board_y = piece_y - abs(board_x - piece_x) * math.sqrt(3) / 3 # 从左从右取出两个数据进行对比,选出来更接近原来老算法的那个值 if abs(board_y - from_left_find_board_y) > abs(from_right_find_board_y): new_board_y = from_right_find_board_y else: new_board_y = from_left_find_board_y if not all((board_x, board_y)): return 0, 0, 0, 0 return piece_x, piece_y, board_x, new_board_y def dump_device_info(): size_str = os.popen('adb shell wm size').read() device_str = os.popen('adb shell getprop ro.product.model').read() density_str = os.popen('adb shell wm density').read() print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\ \nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format( size=size_str.strip(), type=device_str.strip(), dpi=density_str.strip(), os=sys.platform, python=sys.version )) def check_adb(): flag = os.system('adb devices') if flag == 1: print('请安装ADB并配置环境变量') sys.exit() def main(): h, s, v = rgb2hsv(201, 204, 214) print(h, s, v) r, g, b = hsv2rgb(h, s, v*0.7) print(r, g, b) dump_device_info() check_adb() while True: pull_screenshot() im = Image.open('./autojump.png') # 获取棋子和 board 的位置 piece_x, piece_y, board_x, board_y = find_piece_and_board(im) ts = int(time.time()) print(ts, piece_x, piece_y, board_x, board_y) set_button_position(im) jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2)) save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y) backup_screenshot(ts) time.sleep(3) # 为了保证截图的时候应落稳了,多延迟一会儿 if __name__ == '__main__': main()
源码下载:跳一跳小程序python源码
更多内容大家可以参考专题《微信跳一跳》进行学习。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。