from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 神经层函数
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# 导入数据
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
# 利用占位符定义我们所需的神经网络输入
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# 定义隐藏层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# 定义输出层
prediction = add_layer(l1, 10, 1, activation_function=None)
# 计算误差和提供准确率
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
# 输出结果
sess = tf.Session()
sess.run(init)
# matplotlib可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
# 机器学习,学习1000次
for i in range(1000):
# 每50步输出学习误差
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# 可视化结果和改进
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# 用红色和宽度为5的线来显示预测结果,并暂停0.1秒
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(1)