欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow从入门到理解(二):你的第一个神经网络

程序员文章站 2022-05-29 21:06:25
...

运行代码:

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 神经层函数
def add_layer(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

# 导入数据
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# 利用占位符定义我们所需的神经网络输入
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

# 定义隐藏层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

# 定义输出层
prediction = add_layer(l1, 10, 1, activation_function=None)

# 计算误差和提供准确率
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
# 输出结果
sess = tf.Session()
sess.run(init)

# matplotlib可视化
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

# 机器学习,学习1000次
for i in range(1000):
    # 每50步输出学习误差
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # 可视化结果和改进
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_value = sess.run(prediction, feed_dict={xs: x_data})
        # 用红色和宽度为5的线来显示预测结果,并暂停0.1秒
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
        plt.pause(1)

运行结果:

TensorFlow从入门到理解(二):你的第一个神经网络