欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

1122 Hamiltonian Cycle (25 分)

程序员文章站 2022-03-01 13:37:08
...

1122 Hamiltonian Cycle (25 分)

The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V​1​​ V​2​​ ... V​n​​

where n is the number of vertices in the list, and V​i​​'s are the vertices on a path.

Output Specification:

For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.

Sample Input:

6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1

Sample Output:

YES
NO
NO
NO
YES
NO

本来做好大战一场了,以为会遇到超时啦,内存了等错误,没想到直接a了,标准的水题............... 

#include<iostream>
#include<string>
#include<vector>
using namespace std;
int main(){
	int n,m;
	int mp[500][500]={0};
	cin >> n >> m;
	for(int i = 0;i < m;i++){
		int a,b;
		cin >> a >> b;
		mp[a][b] = mp[b][a] = 1;
	}
	int k;
	cin >> k;
	while(k--){
		int nv;
		bool flag = true;
		cin >> nv;
		int a[500]={0};
		vector<int> book(n+1,0);
		for(int i = 0;i < nv;i++){
			cin >> a[i];
		}
		if(a[0] != a[nv-1] || nv != n+1){
			cout << "NO" << endl;
		}else{
			for(int i = 1;i < nv;i++){
				if(mp[a[i-1]][a[i]] != 1){
					flag = false;
					break;
				}
				book[a[i]] = 1;
			}
			for(int i = 1;i <= n;i++){
				if(!book[i]){
					flag=false;
					break;
				}
			}
			if(flag==false){
				cout << "NO" << endl;
			}else{
				cout << "YES" << endl;
			}
		}
	}
	return 0;
}