欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Dijkstra算法原理

程序员文章站 2022-05-28 23:25:22
...

https://blog.csdn.net/yalishadaa/article/details/55827681

算法有两个集合,集合在动态更新中。

https://www.cnblogs.com/skywang12345/p/3603935.html

学习完了原理 接下来就开始代码实践吧!
Dijkstra算法原理 邻接矩阵
邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。
假设图中顶点数为n,则邻接矩阵定义为:
Dijkstra算法原理
下面通过示意图来进行解释。
Dijkstra算法原理
图中的G1是无向图和它对应的邻接矩阵。上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。由于这是无向图,所以边(A,C)和边(C,A)是同一条边;这里列举边时,是按照字母先后顺序列举的。

上图右边的矩阵是G1在内存中的邻接矩阵示意图。A[i][j]=1表示第i个顶点与第j个顶点是邻接点,A[i][j]=0则表示它们不是邻接点;而A[i][j]表示的是第i行第j列的值;例如,A[1,2]=1,表示第1个顶点(即顶点B)和第2个顶点©是邻接点。

邻接矩阵无向图(undirected graph)的代码说明

  1. 基本定义
class MatrixUDG {
    private:
        char mVexs[MAX];         // 顶点集合
        int mVexNum;             // 顶点数
        int mEdgNum;             // 边数
        int mMatrix[MAX][MAX];   // 邻接矩阵

    public:
        // 创建图(自己输入数据),两种构造函数
        MatrixUDG();
        // 创建图(用已提供的矩阵)
        MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
        ~MatrixUDG();

        // 打印矩阵队列图
        void print();

    private:
        // 读取一个输入字符
        char readChar();
        // 返回ch在mMatrix矩阵中的位置
        int getPosition(char ch);
};

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。
例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

  1. 创建矩阵
    这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据。

2.1 创建图(用已提供的矩阵)

/*
 * 创建图(用已提供的矩阵)
 *
 * 参数说明:
 *     vexs  -- 顶点数组
 *     vlen  -- 顶点数组的长度
 *     edges -- 边数组
 *     elen  -- 边数组的长度
 */
MatrixUDG::MatrixUDG(char vexs[], int vlen, char edges[][2], int elen)
{
    int i, p1, p2;

    // 初始化"顶点数"和"边数"
    mVexNum = vlen;
    mEdgNum = elen;
    // 初始化"顶点"
    for (i = 0; i < mVexNum; i++)
        mVexs[i] = vexs[i];

    // 初始化"边"
    for (i = 0; i < mEdgNum; i++)
    {
        // 读取边的起始顶点和结束顶点
        p1 = getPosition(edges[i][0]);
        p2 = getPosition(edges[i][1]);

        mMatrix[p1][p2] = 1;
        mMatrix[p2][p1] = 1;
    }
}

该函数的作用是利用已知数据来创建一个邻接矩阵无向图。 实际上,在本文的测试程序源码中,该方法创建的无向图就是上面图G1。具体的调用代码如下:

char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
    {'A', 'C'}, 
    {'A', 'D'}, 
    {'A', 'F'}, 
    {'B', 'C'}, 
    {'C', 'D'}, 
    {'E', 'G'}, 
    {'F', 'G'}};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
MatrixUDG* pG;

pG = new MatrixUDG(vexs, vlen, edges, elen);

2.2 创建图(自己输入)

/* 
 * 创建图(自己输入数据)
 */
MatrixUDG::MatrixUDG()
{
    char c1, c2;
    int i, p1, p2;

    // 输入"顶点数"和"边数"
    cout << "input vertex number: ";
    cin >> mVexNum;
    cout << "input edge number: ";
    cin >> mEdgNum;
    if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
    {
        cout << "input error: invalid parameters!" << endl;
        return ;
    }

    // 初始化"顶点"
    for (i = 0; i < mVexNum; i++)
    {
        cout << "vertex(" << i << "): ";
        mVexs[i] = readChar();
    }

    // 初始化"边"
    for (i = 0; i < mEdgNum; i++)
    {
        // 读取边的起始顶点和结束顶点
        cout << "edge(" << i << "): ";
        c1 = readChar();
        c2 = readChar();

        p1 = getPosition(c1);
        p2 = getPosition(c2);
        if (p1==-1 || p2==-1)
        {
            cout << "input error: invalid edge!" << endl;
            return ;
        }

        mMatrix[p1][p2] = 1;
        mMatrix[p2][p1] = 1;
    }
}

该函数是通过读取用户的输入,而将输入的数据转换成对应的无向图。
邻接矩阵无向图的完整源码

https://github.com/wangkuiwu/datastructs_and_algorithm/blob/master/source/graph/basic/udg/cplus/MatrixUDG.cpp

Dijkstra算法原理
图中的G2是无向图和它对应的邻接矩阵。

通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。
邻接矩阵的缺点就是比较耗费空间。

  1. 邻接表

邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。
Dijkstra算法原理图中的G1是无向图和它对应的邻接矩阵。
Dijkstra算法原理
图中的G2是有向图和它对应的邻接矩阵。

相关标签: navigation