欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

POJ2505 A multiplication game(博弈)

程序员文章站 2022-05-28 22:54:00
题意 开始时$p = 1$,每次可以乘$2 - 9$,第一个使得$p \geqslant n$的人赢 问先手是否必胜 $1

题意

开始时$p = 1$,每次可以乘$2 - 9$,第一个使得$p \geqslant n$的人赢

问先手是否必胜

$1 <n <4294967295$

Sol

认真的推理一波。

若当前的数为$\frac{n}{9} \leqslant x \leqslant n$,则先手必胜

若当前的数为$\frac{n}{18} \leqslant x \leqslant \frac{n}{9}$,则先手必败

若当前的数为$\frac{n}{18 * 9} \leqslant x \leqslant \frac{n}{18}$,则先手必胜

$\dots \dots \dots \dots \dots \dots \dots \dots \dots\dots\dots \dots $

然后就显然了,每次除$18$,最后判一下就行了。

然而不知道为啥用double才能过qwq。。。

#include<cstdio>
#define LL long long 
using namespace std;
int main() {
    double n;
    while(scanf("%lf", &n) != EOF) {
        while(n > 18) n = n / 18;
        if(n <= 9) puts("Stan wins.");
        else puts("Ollie wins.");        
    }
    return 0;
}