欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

使用numba对Python运算加速的方法

程序员文章站 2022-05-28 21:22:27
有时候需要比较大的计算量,这个时候python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~ (numba 安装貌似很是繁琐,建议安装anac...

有时候需要比较大的计算量,这个时候python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~

(numba 安装貌似很是繁琐,建议安装anaconda,里面自带安装好各种常用科学计算库)

from numba import jit

@jit
def t(count=1000):
 total = 0
 for i in range(int(count)):
  total += i
 return total

测试效果:

(关于__wrapped__ 见我的博文: )

in [17]: %timeit -n 1 t.__wrapped__()
1 loop, best of 3: 52.9 µs per loop

in [18]: %timeit -n 1 t()
the slowest run took 13.00 times longer than the fastest. this could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

可以看到使用jit 加速后,即使设置测试一次,实际上还是取了三次的最优值,如果取最坏值(因为最优值可能是缓存下来的),则耗时为395ns * 13 大概是5us 还是比不使用的52.9us 快上大概10倍,

增大计算量可以看到使用numba加速后的效果提升更加明显,

in [19]: %timeit -n 10 t.__wrapped__(1e6)
10 loops, best of 3: 76.2 ms per loop

in [20]: %timeit -n 1 t(1e6)
the slowest run took 8.00 times longer than the fastest. this could mean that an intermediate result is being cached.
1 loop, best of 3: 790 ns per loop

如果减少计算量,可以看到当降到明显小值时,使用加速后的效果(以最差计)与不加速效果差距不大,因此如果涉及到较大计算量不妨使用jit 加速下,何况使用起来这么简便。

%timeit -n 1 t(10)
1 loop, best of 3: 0 ns per loop

%timeit -n 100 t.__wrapped__(10)
100 loops, best of 3: 1.79 µs per loop

%timeit -n 1 t(1)
the slowest run took 17.00 times longer than the fastest. this could mean that an intermediate result is being cached.
1 loop, best of 3: 395 ns per loop

%timeit -n 100 t.__wrapped__(1)
100 loops, best of 3: 671 ns per loop

以上这篇使用numba对python运算加速的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。