欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ4358: permu(带撤销并查集 不删除莫队)

程序员文章站 2022-05-27 22:30:00
题意 "题目链接" Sol 感觉自己已经老的爬不动了。。 想了一会儿,大概用个不删除莫队+带撤销并查集就能搞了吧,$n \sqrt{n} logn$应该卡的过去 不过不删除莫队咋写来着?。。。。跑去学。。 带撤销并查集咋写来着?。。。。跑去学。。。 发现自己的带撤销并查集是错的,,自己yy着调了1h ......

题意

题目链接

sol

感觉自己已经老的爬不动了。。

想了一会儿,大概用个不删除莫队+带撤销并查集就能搞了吧,\(n \sqrt{n} logn\)应该卡的过去

不过不删除莫队咋写来着?。。。。跑去学。。

带撤销并查集咋写来着?。。。。跑去学。。。

发现自己的带撤销并查集是错的,,自己yy着调了1h终于过了大数据。。

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long 
#define ll long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
#define pb(x) push_back(x)
using namespace std;
const int mod = 1e9 + 7;
const int maxn = 1e6 + 10;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m, a[maxn], belong[maxn], block, ans[maxn], cnt, fa[maxn];
struct q {
    int l, r, id;
    bool operator < (const q &rhs) const{
        return r < rhs.r;
    }
};
vector<q> q[maxn];
int solveblock(int x, int y) {
    if(x == y) return 1;
    vector<int> v;
    for(int i = x; i <= y; i++) v.pb(a[i]);
    sort(v.begin(), v.end());
    int res = 1, now = 1; 
    for(int i = 1; i < v.size(); i++) 
        now = (v[i] == v[i - 1] + 1 ? now + 1 : 1), chmax(res, now);
    return res;
}
int inder[maxn], top, ha[maxn], cur, mx;
struct node {
    int x, deg;
}s[maxn];
int find(int x) {
    return fa[x] == x ? x : find(fa[x]);
}
void unionn(int x, int y) {
    x = find(x); y = find(y);
    if(x == y) return;
    if(inder[x] < inder[y]) swap(x, y);
    chmax(mx, inder[x] + inder[y]);
    fa[y] = x;
    s[++top] = (node) {y, inder[y]};
    s[++top] = (node) {x, inder[x]};//tag
    inder[x] += inder[y];
}
void delet(int cur) {
    while(top > cur) {
        node pre = s[top--];
        fa[pre.x] = pre.x;
        inder[pre.x] = pre.deg;
    }
}
void add(int x) {
    ha[x] = 1;
    if(ha[x - 1]) unionn(x - 1, x);
    if(ha[x + 1]) unionn(x, x + 1);
}
void solve(int i, vector<q> &v) {
    memset(ha, 0, sizeof(ha));
    top = 0; int r = min(n, i * block) + 1;
    int ql = r, qr = ql - 1;//tag
    cur = 0, mx = 1;
    for(int i = 1; i <= n; i++) fa[i] = i, inder[i] = 1;
    for(int i = 0; i < v.size(); i++) {
        q x = v[i];
        while(qr < x.r) add(a[++qr]);
        cur = mx; int pre = top;
        while(ql > x.l) add(a[--ql]);
        ans[x.id] = mx;
        mx = cur;
        delet(pre);
        while(ql < r) ha[a[ql++]] = 0;
    }
}
signed main() {
    int mx = 0;
    n = read(); m = read(); block = sqrt(n); 
    for(int i = 1; i <= n; i++) a[i] = read(), belong[i] = (i - 1) / block + 1, chmax(mx, belong[i]);
    for(int i = 1; i <= m; i++) {
        int x = read(), y = read();
        if(belong[x] == belong[y]) ans[i] = solveblock(x, y);
        else q[belong[x]].push_back({x, y, i});
    }
    for(int i = 1; i <= mx; i++) sort(q[i].begin(), q[i].end()), solve(i, q[i]);    
    for(int i = 1; i <= m; i++) printf("%d\n", ans[i]);
    return 0;
}
/*
8 3
3 1 7 2 4 5 8 6 
1 6
1 3
2 4
*/