欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

论面向组合子程序设计方法 之 微步毂纹生 设计模式OO八卦脚本音乐 

程序员文章站 2022-05-27 22:01:49
...
最近。age0提出了一个OO设计的问题。因为这个例子更加贴近生活,是我们老百姓所喜闻乐见的商场折扣问题,所以我准备改铉更张用这个例子了。具体的例子请看:
http://forum.iteye.com/viewtopic.php?t=17714&start=0

简要的说,需求是:
引用
有这样一家超市,对顾客实行会员制,会员目前分为两个等级:金卡及银卡。
每次会员购物时,都会根据会员等级提供不同的折扣优惠和返点。

这个需求并不复杂。任何一个普通的java程序员都可以轻松搞定。
age0就给出了几个方案供大家选择。

一个大家普遍认可的方案是:
// client:

string id = input_id;

Member member = Members.GetMemberByID(id);;

int discount = member.GetDiscount();;
int point = member.GetReturnPoint();;

// service

class Members
{
        static public Member GetMemberByID(string id);
        {
                string type = GetMemberTypeByID(id);;
               
                switch(type);
                {
                        case "金卡":
                                return new GoldenMember();;
                       
                        case "银卡"
                                return new SilverMember();;
                }
               
                return null;
        }
       
        static protected string GetMemberTypeByID(id);
        {
                string type;
       
                // get type by id
                ...
       
       
                return type;       
        }
}

class Member
{
        protected Member();
        {
        }
       
        virtual public GetDiscount();
        {
                return 0;
        }
       
        virtual public GetReturnPoint();
        {
                return 0;
        }
}

class GoldenMember
{
        override public GetDiscount();
        {
                return 10;
        }
       
        override public GetReturnPoint();
        {
                return 1.5;
        }
}

class SilverMember
{
        override public GetDiscount();
        {
                return 5;
        }
       
        override public GetReturnPoint();
        {
                return 1;
        }
}

也就是说,你不是说不同级别的客户有不同的折扣策略吗?策略模式啊。老子design pattern白学了?哈哈。

这个方案其实不错。简明易懂。可以轻易扩展出白金卡,钻石卡,九天十地菩萨摇头怕怕霹雳金刚雷电卡等等。

不过,age0同学开始憋坏了。他不知道跟老板进了什么谗言,老板愣插进来乱七八糟地提了一大堆新的需求。比如:
引用
对于女性会员,决定在3.8当天在原来的优惠基础上增加5个百分点的折扣

所谓“始作俑者,岂无后乎?”,坏消息还不算完,总结起来,目前的需求如下:
引用

1. 会员等级折扣,会员等级是最重要的分类,大部分方案都会在等级上面作文章,所以单独归为一类
2. 条件型折扣,只有在符合特定条件下才会发生的折扣,比如前面针对女性会员节日的折扣
3. 货物优惠折扣,这些方案根据货物制定,举个例子:客户单独买电视或音响不会有任何折扣,一起买则会得到5%的折扣,电视+音响+DVD组合更会得到7%的折扣。

在一般情况下,这些折扣方案所产生的折扣是累加的(1+2+3),但是不排除其他可能性,例如2中可能出现的排它性条件折扣,也就是说这些折扣方案有可能会出现相对复杂的组合关系。

而且,更要命的是,不知道明天age0同学会不会又给老板出什么损招。(这老板莫不是age0的小舅子?论面向组合子程序设计方法 之 微步毂纹生
            
    
    
        设计模式OO八卦脚本音乐 

于是,早先的OO设计面对这种乱拳打死老师傅的外行老板,有些秀才遇到兵的感觉了。

在那个帖子的后面,一些高手还提出了一些OO的改进方案。不过,比我们最初看到的那个策略模式就复杂的多了。

本文里,我们还是看看CO怎么处理这种问题。


首先,大致分析一下我们的处境。所谓“动手的不如动嘴的”,我们上面有一个对技术狗屁不通却喜欢指手画脚的老板,还有一个让大家恨得牙痒痒的age0这个狗头军师。这让我们对我们真正需要处理的需求茫然不知所措。老板今天说对女性优惠,明天就可能说对单身18岁以下,胸围32C以上的才给优惠(我们有着从来不惮以最坏的恶意推测自己老板的美德),肯给老板“大功告成”的干脆白送,外带小费。(NND,开始YY自己是那个老板了:-))

从技术上说,这些“如何折扣”完全是非常多变的需求。把这些需求写成OO,CO,AO, PO并不是关键。我们最主要的目的是把他们写在一个统一的容易更改的模块中。不管明天老板出什么新的妖蛾子,我们都在一个模块中更改或者增添新的需求。

这个模块可以用Java, groovy, ruby, xml,这些都是可以考虑的方案。
Quake Wang就用bean shell的脚本写了一个解决方法。
public class BeanShellDiscountStrategy implements DiscountStrategy {
    public static final String DISCOUNT_BY_POINT = "if(member.point > 5); return 0.05; else return 0.02;";
    public static final String DISCOUNT_BY_GENDER = "if(member.gender == 0); return 0.01; else return 0.03;";
    
    private Interpreter i = new Interpreter();;
    private String discountScript;

    public BeanShellDiscountStrategy(Member member, String discountScript); {
        this.discountScript = discountScript;
        try {
            i.set("member", member);;
        } catch (EvalError e); {
            throw new RuntimeException(e);;
        }
    }

    public double getDiscount(); {
        try {
            return ((Double); i.eval(discountScript););.doubleValue();;
        } catch (EvalError e); {
            throw new RuntimeException(e);;
        }
    }

    //getters and setters
    public String getDiscountScript(); {
        return discountScript;
    }

    public void setDiscountScript(String discountScript); {
        this.discountScript = discountScript;
    }
}

这个方法,把多变的业务逻辑转移到bean shell脚本中,一定程度地减少了工作量。我们可以用ioc,把不同的脚本注射进去来得到不同的行为。

然而,这个方法对复杂的业务逻辑并没有提供什么本质性的解决方案。它没有提供把简单的规则组合成复杂规则的方法。比如前面age0给我们提出的“排他性”。三个规则,如果第一个成功了,就用第一个,否则顺序执行第二个,第三个,直到某一个规则成功。这种逻辑,实际上已经不是在操作具体折扣,而是在操作规则本身。

我们希望能够写:
exclusive(rule1, rule2, rule3),而不用关心rule1, rule2, rule3到底都是些什么rule。

类似的规则还有一些,比如:如果rule1返回true,才计算rule2;如果rule1返回false,才计算rule2;如果rule1的返回值等于某个预定值,才计算rule2;只有rule1和rule2都返回true,才计算rule3;把rule1和rule2的结果加起来;把一系列的rule的返回值起来;取rule1, rule2, rule3中返回值最大的。等等等等。这些,简单地用bean shell脚本是没用的。


头大了吧?嘿嘿。

其实,这是好消息呀。

我们前面分析了,老板是凶残的,斗争是残酷的,需求是不可预测的。但是,上面的这些组合,却是往往不会变的。因为老板毕竟还是人嘛,他的逻辑毕竟还是跑不出我们普通的“如果,那么”,与,或,非,加减乘除等等。

变化的,往往只是老板怎么组织这些“如果,那么”罢了。

变化的东西我们不好掌握,但是这些不变的东西还是可以啃一啃的。如果我们把这些搞定了。那么不管age0给老板出什么馊主意,我们都可以更轻松的应对。

比如:
Rule single = married.not();;
Rule young = age < 18;
Rule good = breast > 32C;
Rule boss_likes = and(single, young, good);;
Rule boss_pays = and(boss_likes, 大功告成able);;
Rule paid_by_boss = boss_pays.then(120);;
Rule big_discount = boss_likes.then(50);;
Rule boss_afair = exclusive(paid_by_boss, big_discount);;


哈,老板啊,您的代号为“选美”的折扣计划搞定了。


嗯。yy结束。理想是真美好啊。那么,怎么变成现实呢?熟读经典yy文学(武侠小说,比如说)的我们,一定知道被*运缠身所烦恼的主角的成功方法,那就是:夏梦————对不起,是“瞎蒙”,拼音输入给搞错了。(传说yy大师金老先生从前的yy情人就叫夏梦还是“瞎蒙”来着?小生八卦功力浅薄,也不知是否和老先生的作品yy风格有不可说的联系?)

就是说,管你东邪吸毒多狠,管你大轮明王多拽,老子我一不用研究你的武功招式,二不用找领导给你穿小鞋,闭着眼睛,乱走一气凌波微步你也拿我没辙。咱就是运气好,你咬我?


咱们下面就来当一把段呆子。把你的ipod nano耳机戴上,音乐音量放到最大,不要理老板在那唧唧歪歪,什么折扣?什么客户?俗!
咱们还是研究一些伏羲六十四卦,洛神的美妙步法(或者美妙身材也行啊。哈哈)。

所谓太极生两仪,两仪生四象(不是“思想”,更不是“死相”),一个rule的基本是什么?其实很简单,不过是两条:
1。它是否能用?一个对大mm美女的rule不能用在如花身上。
2。它生成的结果。

这个rule还要知道很多facts。于是,一个Rule的接口可以这样定义:

interface Rule{
  boolean apply(RuleContext facts, Variant result);;
}

返回的boolean值表现这个rule是否可用。
那个Variant类型的result是一个placeholder,用来接收rule生成的结果。
RuleContext给rule提供所有需要的信息。

完了,Rule的定义就这样了。失望吧?

下面来看看前面我们说到的那些组合:
ExclusiveRule用来实现排他性组合:

class ExclusiveRule implements Rule{
  private final Rule[] rules;
  boolean apply(RuleContext facts, Variant result);{
    for(Rule rule: rules);{
      if(rule.apply(facts, result););
        return true;
    }
    return false;
  }
}

IfElseRule用来实现简单的if-else逻辑:
class IfElseRule implements Rule{
  private Rule cond;
  private Rule consequence;
  private Rule alternative;
  boolean apply(RuleContext facts, Variant result);{
    if(!cond.apply(facts, result););{
      return false;
    }
    if(result.getBoolean(););{
      return consequence.apply(facts, result);;
    }
    else{
      return alternative.apply(facts, result);;
    }
  }
}


NotRule用来把一个rule的bool返回值取反:
class NotRule implements Rule{
  private Rule rule
  boolean apply(RuleContext facts, Variant result);{
    if(!rule.apply(facts, result);); return false;
    result.setBoolean(!result.getBoolean(););;
  }
}

AndRule用来把两个rule的bool值进行逻辑与:
class AndRule implements Rule{
  private Rule rule1;
  private Rule rule2;
  boolean apply(RuleContext facts, Variant result);{
    if(rule1.apply(facts, result););{
      if(!result.getBoolean(););
        return true;
    }
    if(rule2.apply(facts, result);{
      if(!result.getBoolean(););{
        return true;
      }
    }
    result.setBoolean(true);;
    return true;
  }
}

类似地,OrRule用来进行逻辑或。

其他的加减乘除,取最大值,都可以用类似的方法实现。我就不赘述了。

另外一点需要注意的,是我们实现了ifelse,但是前面所述的组合逻辑中我们只是说如果mm漂漂就如何,没有说不漂漂如何。不能简单地认为不漂漂就不给折扣,在排它性组合中,一个规则是否被应用了决定后续其它规则是否有机会被执行。

不过,我们仍然可以用ifelse来处理单纯if的情况。只需要定义一个NilRule就好了。这个Rule干脆不返回任何值,它永远都是一个不会被应用的规则(也就是说,apply()函数必然返回false)
class NilRule implements Rule{
  boolean apply(RuleContext facts, Variant result);{
    return false;
  }
}

这样,new IfElseRule(ppmm_rule, big_discount_rule, new NilRule());就是一个仅仅对ppmm有效的rule。

上面的这些Rule的基本组合实现,还是有一些重构的空间的。不过目前的实现更加简单,也足以表达CO的思想,所以,进一步的重构我就不做了。

在前面YY时,我们用了rule1.then(...), rule.not()这种东西。而现在的Rule接口只有一个apply(),要做rule.not()必须写"new NotRule(rule)",语法上相对繁琐一些。

为此,我们可以把Rule从接口变成抽象类,把一些常见的组合子放进去,于是我们就可以有rule.not(), rule.ifelse(a,b), rule.then(a), rule.unless(b)等等更加方便干净的语法了。

呵呵,到此为止,我们的迷你规则引擎已经建设得七七八八了。之所以这么顺利,都要归功于你的ipod的音乐,它让我们可以把老板的喋喋不休抛在一边,装作就象盘古开天辟地以来就从来没有那些混账需求一样。世界清静了,我们才得以专心欣赏洛神曼妙的步履和身材。


学会了伏羲八卦,实现了这些可以反复重用的组合规则之后,就剩下实现具体的原子规则了。比如,取得客户性别,胸围等。

这些信息我们都假设可以从RuleContext得到。

那么,可以写一个SimpleRule来简化这些原子规则的创建:

abstract class SimpleRule extends Rule{
  boolean apply(RuleContext facts, Variant result);{
    result.set(run(facts););;
    return true;
  }
  abstract Object run(RuleContext facts);;
}


对取得性别这个原子规则,我们就可以这样写:
class GenderRule extends SimpleRule{
  Object run(RuleContext facts);{
    return facts.getGender();;
  }
}

这些原子规则可能不多,也可能不少。不过,总之是比把所有逻辑都实现在一起要简单多了。而且,如果使用一些脚本语言来包装这些规则的话,这些原子规则往往可以很简单地从closure中直接构造出来,不用每次单独写一个java类。

实际上,当你发现你需要在一个Rule实现里面放很多代码的时候,往往可以停下来想一想了,很有可能这个Rule本身可以有若干个小规则组合而成,不用费劲写了。

最后,让我们精彩回放段呆子凌波微步戏鸠摩智的片断(一个应用我们这个mini rule engine的测试代码):


package jfun.cre.demo.test;


import java.util.Calendar;
import java.util.Date;

import jfun.cre.Rule;

import jfun.cre.Variant;
import jfun.cre.demo.MyRuleContext;
import jfun.cre.demo.MyRules;
import junit.framework.TestCase;

public class SimpleTestCase extends TestCase{
  private Rule getRule();{
    final Rule gold_member = MyRules.discountByMember("gold", 0.1);;
    final Rule silver_member = MyRules.discountByMember("silver", 0.05);;
    final Rule platinum_member = MyRules.discountByMember("platinum", 0.2);;
    final Rule by_member = MyRules.any(new Rule[]{platinum_member,
        gold_member, silver_member});;
   
   
   
    final Rule is_female = MyRules.isGender("female");;
    final Rule is_female_day = MyRules.isMonth(Calendar.MARCH);
        .and(MyRules.isDay(8););;
    final Rule female_discount = is_female.and(is_female_day);
        .then(MyRules.discount(0.05););;
   
   
   
    final Rule tvspeaker = MyRules.purchased(new String[]{"tv","speaker"});
        .then(MyRules.discount(0.05););;
    final Rule tvspeakerdvd = MyRules.purchased(new String[]{"tv","speaker","dvd"});
        .then(MyRules.discount(0.07););;
    final Rule by_purchase = MyRules.any(new Rule[]{tvspeakerdvd, tvspeaker});;
   
    final Rule final_discount = MyRules.productDouble(new Rule[]{
      by_member, female_discount, by_purchase
    });;
    return final_discount;
  }
  public void test1();{
    final MyRuleContext mrc = new MyRuleContext();;
    final Variant result = new Variant();;
    assertTrue(getRule();.apply(mrc, result););;
    assertEquals(0.837, result.getDouble(););;
  }
  public void test2();{
    final MyRuleContext mrc = new MyRuleContext();{
      public Date getNow();{
        Calendar cal = getCalendar();;
        cal.setTime(super.getNow(););;
        cal.set(Calendar.MONTH, Calendar.MARCH);;
        cal.set(Calendar.DAY_OF_MONTH, 8);;
        return cal.getTime();;
      }
    };
    final Variant result = new Variant();;
    assertTrue(getRule();.apply(mrc, result););;
    assertEquals(0.837*0.95d, result.getDouble(););;
  }
}