欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

### Theano

程序员文章站 2022-05-27 10:38:40
...

Theano.

#@author:       gr
#@date:         2014-07-02
#@email:        [email protected]

一、安装Theano

ubuntu下安装相对简单。

安装依赖:

sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ git libatlas3gf-base libatlas-dev

安装theano:

sudo pip install Theano

测试安装是否成功:

$ python
>>> import theano
>>> theano.test()

二、用GPU加速

神经网络需要大量的计算,利用cuda可以进行有效的加速。

可以使用如下脚本进行测试gpu, 保存为check1.py:

from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time

vlen = 10 * 30 * 768  # 10 x #cores x # threads per core
iters = 1000

rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
    r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
    print 'Used the cpu'
else:
    print 'Used the gpu'

运行时分别使用cpu、gpu测试:

$ THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32 python check1.py
[Elemwise{exp,no_inplace}(<TensorType(float32, vector)>)]
Looping 1000 times took 3.06635117531 seconds
Result is [ 1.23178029  1.61879337  1.52278066 ...,  2.20771813  2.29967761
  1.62323284]
Used the cpu

$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python check1.py
Using gpu device 0: GeForce GTX 580
[GpuElemwise{exp,no_inplace}(<CudaNdarrayType(float32, vector)>), HostFromGpu(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.638810873032 seconds
Result is [ 1.23178029  1.61879349  1.52278066 ...,  2.20771813  2.29967761
  1.62323296]
Used the gpu

我在本机上测试,平均速度要快5倍左右。

三、实例分析LeNet

LeNet是Y. LeCun设计的一种卷积神经网络。我们可以使用这个深度学习的教程,代码在GitHub上

Reference

  1. http://deeplearning.net/software/theano/install_ubuntu.html
  2. http://deeplearning.net/software/theano/tutorial/using_gpu.html
  3. http://deeplearning.net/tutorial/contents.html
  4. http://deeplearning.net/tutorial/lenet.html