BZOJ3165: [Heoi2013]Segment(李超线段树)
程序员文章站
2022-05-26 22:55:46
题意 "题目链接" Sol 李超线段树板子题。具体原理就不讲了。 一开始自己yy着写差点写自闭都快把叉积搬出来了。。。 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz ......
题意
sol
李超线段树板子题。具体原理就不讲了。
一开始自己yy着写差点写自闭都快把叉积搬出来了。。。
后来看了下litble的写法才发现原来可以写的这么清晰简洁orz
#include<bits/stdc++.h> #define pdd pair<double, double> #define mp make_pair #define fi first #define se second using namespace std; const int maxn = 1e6 + 10, lim = 1e9; template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;} template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int n = 39989, m; int ls[maxn], rs[maxn], root, cnt, tot; pdd mx[maxn]; struct line { double k, b; int id; }s[maxn]; pdd get(int x0, int y0, int x1, int y1) { double k = (double) (y1 - y0) / (x1 - x0), b = (double) y0 - k * x0; return {k, b}; } double calc(line line, int x) { return line.k * x + line.b; } double getpoint(line a, line b) { return (b.b - a.b) / (a.k - b.k); } pdd ret; void query(int k, int l, int r, int p) {//fi: val se: id if(chmax(ret.fi, calc(s[k], p))) ret.se = s[k].id; if(l == r) return ; int mid = l + r >> 1; if(p <= mid) query(ls[k], l, mid, p); else query(rs[k], mid + 1, r, p); } void modify(int &k, int l, int r, int ql, int qr, line seg) { if(!k) k = ++tot; int mid = l + r >> 1; if(ql <= l && r <= qr) { if(!s[k].id) {s[k] = seg; return ;} int p = getpoint(s[k], seg); int pl = calc(s[k], l), pr = calc(s[k], r), nl = calc(seg, l), nr = calc(seg, r); if(pl > nl && pr > nr) return ; if(pl < nl && pr < nr) {s[k] = seg; return ;} if(pl < nl) { if(p > mid) modify(rs[k], mid + 1, r, mid + 1, r, s[k]), s[k] = seg; else modify(ls[k], l, mid, l, mid, seg); } else { if(p > mid) modify(rs[k], mid + 1, r, mid + 1, r, seg); else modify(ls[k], l, mid, l, mid, s[k]), s[k] = seg; } return ; } if(l == r) return ; if(ql <= mid) modify(ls[k], l, mid, ql, qr, seg); if(qr > mid) modify(rs[k], mid + 1, r, ql, qr, seg); } signed main() { m = read(); for(int i = 1, lastans = 0; i <= m; i++) { int opt = read(); if(!opt) { int k = read(), x = (k + lastans - 1) % 39989 + 1; ret.fi = 0; ret.se = 0; query(root, 1, n, x); printf("%d\n", lastans = (mx[x].fi > ret.fi ? mx[x].se : ret.se)); } else { int x0 = (read() + lastans - 1) % 39989 + 1, y0 = (read() + lastans - 1) % lim + 1, x1 = (read() + lastans - 1) % 39989 + 1, y1 = (read() + lastans - 1) % lim + 1; if(x0 > x1) swap(x0, x1), swap(y0, y1); if(x0 == x1 && chmax(mx[x0].fi, max(y0, y1))) mx[x0].se = i; pdd li = get(x0, y0, x1, y1); modify(root, 1, n, x0, x1, {li.fi, li.se, ++cnt}); } } return 0; }
上一篇: 剧情是这样的