pytorch学习笔记(九):softmax回归的简洁实现
程序员文章站
2022-05-26 21:17:27
...
使用Pytorch实现一个softmax回归模型。首先导入所需的包或模块。
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
1. 获取和读取数据
我们仍然使用Fashion-MNIST数据集和上一节中设置的批量大小。
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
2. 定义和初始化模型
softmax回归的输出层是一个全连接层,所以我们用一个线性模块就可以了。因为前面我们数据返回的每个batch样本x
的形状为(batch_size, 1, 28, 28), 所以我们要先用view()
将x
的形状转换成(batch_size, 784)才送入全连接层。
num_inputs = 784
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(LinearNet, self).__init__()
self.linear = nn.Linear(num_inputs, num_outputs)
def forward(self, x): # x shape: (batch, 1, 28, 28)
y = self.linear(x.view(x.shape[0], -1))
return y
net = LinearNet(num_inputs, num_outputs)
我们将对x
的形状转换的这个功能自定义一个FlattenLayer
并记录在d2lzh_pytorch
中方便后面使用。
# 本函数已保存在d2lzh_pytorch包中方便以后使用
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
这样我们就可以更方便地定义我们的模型:
from collections import OrderedDict
net = nn.Sequential(
# FlattenLayer(),
# nn.Linear(num_inputs, num_outputs)
OrderedDict([
('flatten', FlattenLayer()),
('linear', nn.Linear(num_inputs, num_outputs))
])
)
然后,我们使用均值为0、标准差为0.01的正态分布随机初始化模型的权重参数。
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
3. softmax和交叉熵损失函数
如果做了上一节的练习,那么你可能意识到了分开定义softmax运算和交叉熵损失函数可能会造成数值不稳定。因此,PyTorch提供了一个包括softmax运算和交叉熵损失计算的函数。它的数值稳定性更好。
loss = nn.CrossEntropyLoss()
4. 定义优化算法
我们使用学习率为0.1的小批量随机梯度下降作为优化算法。
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
5. 训练模型
接下来,我们使用上一节中定义的训练函数来训练模型。
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
输出:
epoch 1, loss 0.0031, train acc 0.745, test acc 0.790
epoch 2, loss 0.0022, train acc 0.812, test acc 0.807
epoch 3, loss 0.0021, train acc 0.825, test acc 0.806
epoch 4, loss 0.0020, train acc 0.832, test acc 0.810
epoch 5, loss 0.0019, train acc 0.838, test acc 0.823
6. 总代码
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
from collections import OrderedDict
net = nn.Sequential(
# FlattenLayer(),
# nn.Linear(num_inputs, num_outputs)
OrderedDict([
('flatten', FlattenLayer()),
('linear', nn.Linear(num_inputs, num_outputs))])
)
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
num_epochs = 5
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
optimizer.zero_grad()
l.backward() # 计算梯度
optimizer.step() # 随机梯度下降算法, 更新参数
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
7.小结
- PyTorch提供的函数往往具有更好的数值稳定性。
- 可以使用PyTorch更简洁地实现softmax回归。
上一篇: 【案例】聚类算法
下一篇: Markdown基础语法总结
推荐阅读
-
(pytorch-深度学习系列)pytorch避免过拟合-dropout丢弃法的实现-学习笔记
-
【深度学习学习笔记】3.softmaxRegression:实现softmax的交叉熵损失函数
-
Pytorch深度学习笔记②:线性回归模型的简单实现
-
softmax 回归的简洁实现
-
pytorch学习笔记(九):softmax回归的简洁实现
-
Pytorch深度学习基础——Softmax回归实现
-
[pytorch、学习] - 3.6 softmax回归的从零开始实现
-
[pytorch、学习] - 3.7 softmax回归的简洁实现
-
线性回归模型使用pytorch的简洁实现
-
上课笔记篇---用Pytorch实现简单的线性回归