Keras|Tensorflow 计算模型的FLOPs
最近在研究模型的计算量,发现Pytorch有库可以直接计算模型的计算量,所以需要一个一个Keras和Tensorflow可以用的,直接把Model接入到函数中,print一下就可以计算出FLOPs
FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。
对于计算量主要有Madds和MFlops两个概念。shufflenet的论文用的是Flops,Mobilenet用的是Madds,Flops应该是Madds的两倍,具体可参考
https://blog.csdn.net/shwan_ma/article/details/84924142
https://www.zhihu.com/question/65305385/answer/451060549
计算函数如下:
import tensorflow as tf
import keras.backend as K
def get_flops(model):
run_meta = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
# We use the Keras session graph in the call to the profiler.
flops = tf.profiler.profile(graph=K.get_session().graph,
run_meta=run_meta, cmd='op', options=opts)
return flops.total_float_ops # Prints the "flops" of the model.
# .... Define your model here ....
print(get_flops(model))
贴一个Mask_RCNN的计算结果
Doc:
op: The nodes are operation kernel type, such as MatMul, Conv2D. Graph nodes belonging to the same type are aggregated together.
flops: Number of float operations. Note: Please read the implementation for the math behind it.
Profile:
node name | # float_ops
Conv2D 95.74b float_ops (100.00%, 90.16%)
Conv2DBackpropInput 10.28b float_ops (9.84%, 9.68%)
Mul 63.89m float_ops (0.16%, 0.06%)
Add 63.88m float_ops (0.10%, 0.06%)
BiasAdd 46.49m float_ops (0.04%, 0.04%)
ArgMax 80.00k float_ops (0.00%, 0.00%)
Minimum 4.10k float_ops (0.00%, 0.00%)
Maximum 4.10k float_ops (0.00%, 0.00%)
Sub 2.33k float_ops (0.00%, 0.00%)
GreaterEqual 1.00k float_ops (0.00%, 0.00%)
Greater 1.00k float_ops (0.00%, 0.00%)
Equal 400 float_ops (0.00%, 0.00%)
RealDiv 202 float_ops (0.00%, 0.00%)
Log 102 float_ops (0.00%, 0.00%)
Less 2 float_ops (0.00%, 0.00%)
上一篇: 可视化决策树模型
下一篇: Ubuntu安装ohmyzsh