欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python基于keras训练实现微笑识别的示例详解

程序员文章站 2022-03-01 13:13:38
目录一、数据预处理二、训练模型创建模型训练模型训练结果三、预测效果四、源代码pretreatment.pytrain.pypredict.py一、数据预处理实验数据来自genki4k提取含有完整人脸的...

一、数据预处理

实验数据来自genki4k

Python基于keras训练实现微笑识别的示例详解

提取含有完整人脸的图片

def init_file():
    num = 0
    bar = tqdm(os.listdir(read_path))
    for file_name in bar:
        bar.desc = "预处理图片: "
        # a图片的全路径
        img_path = (read_path + "/" + file_name)
        # 读入的图片的路径中含非英文
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.imread_unchanged)
        # 获取图片的宽高
        img_shape = img.shape
        img_height = img_shape[0]
        img_width = img_shape[1]

        # 用来存储生成的单张人脸的路径

        # dlib检测
        dets = detector(img, 1)
        for k, d in enumerate(dets):
            if len(dets) > 1:
                continue
            num += 1
            # 计算矩形大小
            # (x,y), (宽度width, 高度height)
            # pos_start = tuple([d.left(), d.top()])
            # pos_end = tuple([d.right(), d.bottom()])

            # 计算矩形框大小
            height = d.bottom() - d.top()
            width = d.right() - d.left()

            # 根据人脸大小生成空的图像
            img_blank = np.zeros((height, width, 3), np.uint8)
            for i in range(height):
                if d.top() + i >= img_height:  # 防止越界
                    continue
                for j in range(width):
                    if d.left() + j >= img_width:  # 防止越界
                        continue
                    img_blank[i][j] = img[d.top() + i][d.left() + j]
            img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.inter_cubic)
            # 保存图片
            cv2.imencode('.jpg', img_blank)[1].tofile(save_path + "/" + "file" + str(num) + ".jpg")

    logging.info("一共", len(os.listdir(read_path)), "个样本")
    logging.info("有效样本", num)

二、训练模型

创建模型

# 创建网络
def create_model():
    model = models.sequential()
    model.add(layers.conv2d(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(64, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(128, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(128, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.flatten())
    model.add(layers.dropout(0.5))
    model.add(layers.dense(512, activation='relu'))
    model.add(layers.dense(1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy',
                  optimizer=optimizers.rmsprop(lr=1e-4),
                  metrics=['acc'])
    return model

训练模型

# 训练模型
def train_model(model):
    # 归一化处理
    train_datagen = imagedatagenerator(
        rescale=1. / 255,
        rotation_range=40,
        width_shift_range=0.2,
        height_shift_range=0.2,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=true, )

    test_datagen = imagedatagenerator(rescale=1. / 255)

    train_generator = train_datagen.flow_from_directory(
        # this is the target directory
        train_dir,
        # all images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

    validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

    history = model.fit_generator(
        train_generator,
        steps_per_epoch=60,
        epochs=12,
        validation_data=validation_generator,
        validation_steps=30)

    # 保存模型
    save_path = "../output/model"
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    model.save(save_path + "/smiledetect.h5")
    return history

训练结果

准确率

Python基于keras训练实现微笑识别的示例详解

丢失率

Python基于keras训练实现微笑识别的示例详解

训练过程

Python基于keras训练实现微笑识别的示例详解

三、预测

通过读取摄像头内容进行预测

def rec(img):
    gray = cv2.cvtcolor(img, cv2.color_bgr2gray)
    dets = detector(gray, 1)
    if dets is not none:
        for face in dets:
            left = face.left()
            top = face.top()
            right = face.right()
            bottom = face.bottom()
            cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 2)
            img1 = cv2.resize(img[top:bottom, left:right], dsize=(150, 150))
            img1 = cv2.cvtcolor(img1, cv2.color_bgr2rgb)
            img1 = np.array(img1) / 255.
            img_tensor = img1.reshape(-1, 150, 150, 3)
            prediction = model.predict(img_tensor)
            if prediction[0][0] > 0.5:
                result = 'unsmile'
            else:
                result = 'smile'
            cv2.puttext(img, result, (left, top), font, 2, (0, 255, 0), 2, cv2.line_aa)
        cv2.imshow('video', img)


while video.isopened():
    res, img_rd = video.read()
    if not res:
        break
    rec(img_rd)
    if cv2.waitkey(1) & 0xff == ord('q'):
        break

效果

Python基于keras训练实现微笑识别的示例详解

Python基于keras训练实现微笑识别的示例详解

四、源代码

pretreatment.py

import dlib  # 人脸识别的库dlib
import numpy as np  # 数据处理的库numpy
import cv2  # 图像处理的库opencv
import os
import shutil
from tqdm import tqdm
import logging

# dlib预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('../resources/shape_predictor_68_face_landmarks.dat')
# 原图片路径
read_path = "../resources/genki4k/files"
# 提取人脸存储路径
save_path = "../output/genki4k/files"
if not os.path.exists(save_path):
    os.makedirs(save_path)

# 新的数据集
data_dir = '../resources/data'
if not os.path.exists(data_dir):
    os.makedirs(data_dir)

# 训练集
train_dir = data_dir + "/train"
if not os.path.exists(train_dir):
    os.makedirs(train_dir)
# 验证集
validation_dir = os.path.join(data_dir, 'validation')
if not os.path.exists(validation_dir):
    os.makedirs(validation_dir)
# 测试集
test_dir = os.path.join(data_dir, 'test')
if not os.path.exists(test_dir):
    os.makedirs(test_dir)


# 初始化训练数据
def init_data(file_list):
    # 如果不存在文件夹则新建
    for file_path in file_list:
        if not os.path.exists(file_path):
            os.makedirs(file_path)
        # 存在则清空里面所有数据
        else:
            for i in os.listdir(file_path):
                path = os.path.join(file_path, i)
                if os.path.isfile(path):
                    os.remove(path)


def init_file():
    num = 0
    bar = tqdm(os.listdir(read_path))
    for file_name in bar:
        bar.desc = "预处理图片: "
        # a图片的全路径
        img_path = (read_path + "/" + file_name)
        # 读入的图片的路径中含非英文
        img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), cv2.imread_unchanged)
        # 获取图片的宽高
        img_shape = img.shape
        img_height = img_shape[0]
        img_width = img_shape[1]

        # 用来存储生成的单张人脸的路径

        # dlib检测
        dets = detector(img, 1)
        for k, d in enumerate(dets):
            if len(dets) > 1:
                continue
            num += 1
            # 计算矩形大小
            # (x,y), (宽度width, 高度height)
            # pos_start = tuple([d.left(), d.top()])
            # pos_end = tuple([d.right(), d.bottom()])

            # 计算矩形框大小
            height = d.bottom() - d.top()
            width = d.right() - d.left()

            # 根据人脸大小生成空的图像
            img_blank = np.zeros((height, width, 3), np.uint8)
            for i in range(height):
                if d.top() + i >= img_height:  # 防止越界
                    continue
                for j in range(width):
                    if d.left() + j >= img_width:  # 防止越界
                        continue
                    img_blank[i][j] = img[d.top() + i][d.left() + j]
            img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.inter_cubic)
            # 保存图片
            cv2.imencode('.jpg', img_blank)[1].tofile(save_path + "/" + "file" + str(num) + ".jpg")

    logging.info("一共", len(os.listdir(read_path)), "个样本")
    logging.info("有效样本", num)


# 划分数据集
def divide_data(file_path, message, begin, end):
    files = ['file{}.jpg'.format(i) for i in range(begin, end)]
    bar = tqdm(files)
    bar.desc = message
    for file in bar:
        src = os.path.join(save_path, file)
        dst = os.path.join(file_path, file)
        shutil.copyfile(src, dst)


if __name__ == "__main__":
    init_file()

    positive_train_dir = os.path.join(train_dir, 'smile')
    negative_train_dir = os.path.join(train_dir, 'unsmile')
    positive_validation_dir = os.path.join(validation_dir, 'smile')
    negative_validation_dir = os.path.join(validation_dir, 'unsmile')
    positive_test_dir = os.path.join(test_dir, 'smile')
    negative_test_dir = os.path.join(test_dir, 'unsmile')
    file_list = [positive_train_dir, positive_validation_dir, positive_test_dir,
                 negative_train_dir, negative_validation_dir, negative_test_dir]

    init_data(file_list)

    divide_data(positive_train_dir, "划分训练集正样本", 1, 1001)
    divide_data(negative_train_dir, "划分训练集负样本", 2200, 3200)
    divide_data(positive_validation_dir, "划分验证集正样本", 1000, 1500)
    divide_data(negative_validation_dir, "划分验证集负样本", 3000, 3500)
    divide_data(positive_test_dir, "划分测试集正样本", 1500, 2000)
    divide_data(negative_test_dir, "划分测试集负样本", 2800, 3500)

train.py

import os
from keras import layers
from keras import models
from tensorflow import optimizers
import matplotlib.pyplot as plt
from keras.preprocessing.image import imagedatagenerator

train_dir = "../resources/data/train"
validation_dir = "../resources/data/validation"


# 创建网络
def create_model():
    model = models.sequential()
    model.add(layers.conv2d(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(64, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(128, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.conv2d(128, (3, 3), activation='relu'))
    model.add(layers.maxpooling2d((2, 2)))
    model.add(layers.flatten())
    model.add(layers.dropout(0.5))
    model.add(layers.dense(512, activation='relu'))
    model.add(layers.dense(1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy',
                  optimizer=optimizers.rmsprop(lr=1e-4),
                  metrics=['acc'])
    return model


# 训练模型
def train_model(model):
    # 归一化处理
    train_datagen = imagedatagenerator(
        rescale=1. / 255,
        rotation_range=40,
        width_shift_range=0.2,
        height_shift_range=0.2,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=true, )

    test_datagen = imagedatagenerator(rescale=1. / 255)

    train_generator = train_datagen.flow_from_directory(
        # this is the target directory
        train_dir,
        # all images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

    validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')

    history = model.fit_generator(
        train_generator,
        steps_per_epoch=60,
        epochs=12,
        validation_data=validation_generator,
        validation_steps=30)

    # 保存模型
    save_path = "../output/model"
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    model.save(save_path + "/smiledetect.h5")
    return history


# 展示训练结果
def show_results(history):
    # 数据增强过后的训练集与验证集的精确度与损失度的图形
    acc = history.history['acc']
    val_acc = history.history['val_acc']
    loss = history.history['loss']
    val_loss = history.history['val_loss']

    # 绘制结果
    epochs = range(len(acc))
    plt.plot(epochs, acc, 'bo', label='training acc')
    plt.plot(epochs, val_acc, 'b', label='validation acc')
    plt.title('training and validation accuracy')
    plt.legend()
    plt.figure()

    plt.plot(epochs, loss, 'bo', label='training loss')
    plt.plot(epochs, val_loss, 'b', label='validation loss')
    plt.title('training and validation loss')
    plt.legend()
    plt.show()


if __name__ == "__main__":
    model = create_model()

    history = train_model(model)

    show_results(history)

predict.py

import os
from keras import layers
from keras import models
from tensorflow import optimizers
import matplotlib.pyplot as plt
from keras.preprocessing.image import imagedatagenerator

train_dir = "../resources/data/train"
validation_dir = "../resources/data/validation"


# 创建网络
# 检测视频或者摄像头中的人脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from pil import image

model = load_model('../output/model/smiledetect.h5')
detector = dlib.get_frontal_face_detector()
video = cv2.videocapture(0)
font = cv2.font_hershey_simplex


def rec(img):
    gray = cv2.cvtcolor(img, cv2.color_bgr2gray)
    dets = detector(gray, 1)
    if dets is not none:
        for face in dets:
            left = face.left()
            top = face.top()
            right = face.right()
            bottom = face.bottom()
            cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 2)
            img1 = cv2.resize(img[top:bottom, left:right], dsize=(150, 150))
            img1 = cv2.cvtcolor(img1, cv2.color_bgr2rgb)
            img1 = np.array(img1) / 255.
            img_tensor = img1.reshape(-1, 150, 150, 3)
            prediction = model.predict(img_tensor)
            if prediction[0][0] > 0.5:
                result = 'unsmile'
            else:
                result = 'smile'
            cv2.puttext(img, result, (left, top), font, 2, (0, 255, 0), 2, cv2.line_aa)
        cv2.imshow('video', img)


while video.isopened():
    res, img_rd = video.read()
    if not res:
        break
    rec(img_rd)
    if cv2.waitkey(1) & 0xff == ord('q'):
        break
video.release()
cv2.destroyallwindows()

以上就是python基于keras训练实现微笑识别的示例详解的详细内容,更多关于python keras微笑识别的资料请关注其它相关文章!