欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

基于Python实现简单的人脸识别系统

程序员文章站 2022-03-09 08:11:06
目录前言基本原理代码实现创建虚拟环境安装必要的库前言最近又多了不少朋友关注,先在这里谢谢大家。关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个...

前言

最近又多了不少朋友关注,先在这里谢谢大家。关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷。今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了。

b站视频:用300行代码实现人脸识别系统_哔哩哔哩_bilibili

码云地址:face_dlib_py37_42: 用300行代码开发一个人脸识别系统-42 (gitee.com)

基于Python实现简单的人脸识别系统

基本原理

人脸识别和目标检测这些还不太一样,比如大家传统的训练一个目标检测模型,你只有对这个目标训练了之后,你的模型才能找到这样的目标,比如你的目标检测模型如果是检测植物的,那显然就不能检测动物。但是人脸识别就不一样,以你的手机为例,你发现你只录入了一次你的人脸信息,不需要训练,他就能准确的识别你,这里识别的原理是通过人脸识别的模型提取你脸部的特征向量,然后将实时检测到的你的人脸同数据库中保存的人脸进行比对,如果相似度超过一定的阈值之后,就认为比对成功。不过我这里说的只是简化版本的人脸识别,现在手机和门禁这些要复杂和安全的多,也不是简单平面上的人脸识别。

总结下来可以分为下面的步骤:

1.上传人脸到数据库

2.人脸检测

3.数据库比对并返回结果

这里我做了一个简答的示意图,可以帮助大家简单理解一下。

基于Python实现简单的人脸识别系统

代码实现

废话不多说,这里就是我们的代码实现,代码我已经上传到码云,大家直接下载就行,地址就在博客开头。

不会安装python环境的兄弟请看这里:

创建虚拟环境

创建虚拟环境前请大家先下载博客开头的码云源码到本地。

本次我们需要使用到python3.7的虚拟环境,命令如下:

conda create -n face python==3.7.3
conda activate face

安装必要的库

pip install -r requirements.txt

愉快地开始你的人脸识别吧!

执行下面的主文件即可

python ui.py

或者在pycharm中按照下面的方式直接运行即可

基于Python实现简单的人脸识别系统

首先将你需要识别的人脸上传到数据库中

基于Python实现简单的人脸识别系统

通过第二个视频检测功能识别实时的人脸

基于Python实现简单的人脸识别系统

详细的代码如下:

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
project name: yolov5-jungong
file name: window.py.py
author: chenming
create date: 2021/11/8
description:图形化界面,可以检测摄像头、视频和图片文件
-------------------------------------------------
"""
# 应该在界面启动的时候就将模型加载出来,设置tmp的目录来放中间的处理结果
import shutil
import pyqt5.qtcore
from pyqt5.qtgui import *
from pyqt5.qtcore import *
from pyqt5.qtwidgets import *
import threading
import argparse
import os
import sys
from pathlib import path
import cv2
import torch
import torch.backends.cudnn as cudnn
import os.path as osp
file = path(__file__).resolve()
root = file.parents[0]  # yolov5 root directory
if str(root) not in sys.path:
    sys.path.append(str(root))  # add root to path
root = path(os.path.relpath(root, path.cwd()))  # relative

from models.common import detectmultibackend
from utils.datasets import img_formats, vid_formats, loadimages, loadstreams
from utils.general import (logger, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync


# 添加一个关于界面
# 窗口主类
class mainwindow(qtabwidget):
    # 基本配置不动,然后只动第三个界面
    def __init__(self):
        # 初始化界面
        super().__init__()
        self.setwindowtitle('target detection system')
        self.resize(1200, 800)
        self.setwindowicon(qicon("images/ui/lufei.png"))
        # 图片读取进程
        self.output_size = 480
        self.img2predict = ""
        self.device = 'cpu'
        # # 初始化视频读取线程
        self.vid_source = '0'  # 初始设置为摄像头
        self.stopevent = threading.event()
        self.webcam = true
        self.stopevent.clear()
        self.model = self.model_load(weights="runs/train/exp_yolov5s/weights/best.pt",
                                     device="cpu")  # todo 指明模型加载的位置的设备
        self.initui()
        self.reset_vid()

    '''
    ***模型初始化***
    '''
    @torch.no_grad()
    def model_load(self, weights="",  # model.pt path(s)
                   device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
                   half=false,  # use fp16 half-precision inference
                   dnn=false,  # use opencv dnn for onnx inference
                   ):
        device = select_device(device)
        half &= device.type != 'cpu'  # half precision only supported on cuda
        device = select_device(device)
        model = detectmultibackend(weights, device=device, dnn=dnn)
        stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
        # half
        half &= pt and device.type != 'cpu'  # half precision only supported by pytorch on cuda
        if pt:
            model.model.half() if half else model.model.float()
        print("模型加载完成!")
        return model

    '''
    ***界面初始化***
    '''
    def initui(self):
        # 图片检测子界面
        font_title = qfont('楷体', 16)
        font_main = qfont('楷体', 14)
        # 图片识别界面, 两个按钮,上传图片和显示结果
        img_detection_widget = qwidget()
        img_detection_layout = qvboxlayout()
        img_detection_title = qlabel("图片识别功能")
        img_detection_title.setfont(font_title)
        mid_img_widget = qwidget()
        mid_img_layout = qhboxlayout()
        self.left_img = qlabel()
        self.right_img = qlabel()
        self.left_img.setpixmap(qpixmap("images/ui/up.jpeg"))
        self.right_img.setpixmap(qpixmap("images/ui/right.jpeg"))
        self.left_img.setalignment(qt.aligncenter)
        self.right_img.setalignment(qt.aligncenter)
        mid_img_layout.addwidget(self.left_img)
        mid_img_layout.addstretch(0)
        mid_img_layout.addwidget(self.right_img)
        mid_img_widget.setlayout(mid_img_layout)
        up_img_button = qpushbutton("上传图片")
        det_img_button = qpushbutton("开始检测")
        up_img_button.clicked.connect(self.upload_img)
        det_img_button.clicked.connect(self.detect_img)
        up_img_button.setfont(font_main)
        det_img_button.setfont(font_main)
        up_img_button.setstylesheet("qpushbutton{color:white}"
                                    "qpushbutton:hover{background-color: rgb(2,110,180);}"
                                    "qpushbutton{background-color:rgb(48,124,208)}"
                                    "qpushbutton{border:2px}"
                                    "qpushbutton{border-radius:5px}"
                                    "qpushbutton{padding:5px 5px}"
                                    "qpushbutton{margin:5px 5px}")
        det_img_button.setstylesheet("qpushbutton{color:white}"
                                     "qpushbutton:hover{background-color: rgb(2,110,180);}"
                                     "qpushbutton{background-color:rgb(48,124,208)}"
                                     "qpushbutton{border:2px}"
                                     "qpushbutton{border-radius:5px}"
                                     "qpushbutton{padding:5px 5px}"
                                     "qpushbutton{margin:5px 5px}")
        img_detection_layout.addwidget(img_detection_title, alignment=qt.aligncenter)
        img_detection_layout.addwidget(mid_img_widget, alignment=qt.aligncenter)
        img_detection_layout.addwidget(up_img_button)
        img_detection_layout.addwidget(det_img_button)
        img_detection_widget.setlayout(img_detection_layout)

        # todo 视频识别界面
        # 视频识别界面的逻辑比较简单,基本就从上到下的逻辑
        vid_detection_widget = qwidget()
        vid_detection_layout = qvboxlayout()
        vid_title = qlabel("视频检测功能")
        vid_title.setfont(font_title)
        self.vid_img = qlabel()
        self.vid_img.setpixmap(qpixmap("images/ui/up.jpeg"))
        vid_title.setalignment(qt.aligncenter)
        self.vid_img.setalignment(qt.aligncenter)
        self.webcam_detection_btn = qpushbutton("摄像头实时监测")
        self.mp4_detection_btn = qpushbutton("视频文件检测")
        self.vid_stop_btn = qpushbutton("停止检测")
        self.webcam_detection_btn.setfont(font_main)
        self.mp4_detection_btn.setfont(font_main)
        self.vid_stop_btn.setfont(font_main)
        self.webcam_detection_btn.setstylesheet("qpushbutton{color:white}"
                                                "qpushbutton:hover{background-color: rgb(2,110,180);}"
                                                "qpushbutton{background-color:rgb(48,124,208)}"
                                                "qpushbutton{border:2px}"
                                                "qpushbutton{border-radius:5px}"
                                                "qpushbutton{padding:5px 5px}"
                                                "qpushbutton{margin:5px 5px}")
        self.mp4_detection_btn.setstylesheet("qpushbutton{color:white}"
                                             "qpushbutton:hover{background-color: rgb(2,110,180);}"
                                             "qpushbutton{background-color:rgb(48,124,208)}"
                                             "qpushbutton{border:2px}"
                                             "qpushbutton{border-radius:5px}"
                                             "qpushbutton{padding:5px 5px}"
                                             "qpushbutton{margin:5px 5px}")
        self.vid_stop_btn.setstylesheet("qpushbutton{color:white}"
                                        "qpushbutton:hover{background-color: rgb(2,110,180);}"
                                        "qpushbutton{background-color:rgb(48,124,208)}"
                                        "qpushbutton{border:2px}"
                                        "qpushbutton{border-radius:5px}"
                                        "qpushbutton{padding:5px 5px}"
                                        "qpushbutton{margin:5px 5px}")
        self.webcam_detection_btn.clicked.connect(self.open_cam)
        self.mp4_detection_btn.clicked.connect(self.open_mp4)
        self.vid_stop_btn.clicked.connect(self.close_vid)
        # 添加组件到布局上
        vid_detection_layout.addwidget(vid_title)
        vid_detection_layout.addwidget(self.vid_img)
        vid_detection_layout.addwidget(self.webcam_detection_btn)
        vid_detection_layout.addwidget(self.mp4_detection_btn)
        vid_detection_layout.addwidget(self.vid_stop_btn)
        vid_detection_widget.setlayout(vid_detection_layout)

        # todo 关于界面
        about_widget = qwidget()
        about_layout = qvboxlayout()
        about_title = qlabel('欢迎使用目标检测系统\n\n 提供付费指导:有需要的好兄弟加下面的qq即可')  # todo 修改欢迎词语
        about_title.setfont(qfont('楷体', 18))
        about_title.setalignment(qt.aligncenter)
        about_img = qlabel()
        about_img.setpixmap(qpixmap('images/ui/qq.png'))
        about_img.setalignment(qt.aligncenter)

        # label4.settext("<a href='https://oi.wiki/wiki/学习率的调整'>如何调整学习率</a>")
        label_super = qlabel()  # todo 更换作者信息
        label_super.settext("<a href='https://blog.csdn.net/echoson'>或者你可以在这里找到我-->肆十二</a>")
        label_super.setfont(qfont('楷体', 16))
        label_super.setopenexternallinks(true)
        # label_super.setopenexternallinks(true)
        label_super.setalignment(qt.alignright)
        about_layout.addwidget(about_title)
        about_layout.addstretch()
        about_layout.addwidget(about_img)
        about_layout.addstretch()
        about_layout.addwidget(label_super)
        about_widget.setlayout(about_layout)

        self.left_img.setalignment(qt.aligncenter)
        self.addtab(img_detection_widget, '图片检测')
        self.addtab(vid_detection_widget, '视频检测')
        self.addtab(about_widget, '联系我')
        self.settabicon(0, qicon('images/ui/lufei.png'))
        self.settabicon(1, qicon('images/ui/lufei.png'))
        self.settabicon(2, qicon('images/ui/lufei.png'))

    '''
    ***上传图片***
    '''
    def upload_img(self):
        # 选择录像文件进行读取
        filename, filetype = qfiledialog.getopenfilename(self, 'choose file', '', '*.jpg *.png *.tif *.jpeg')
        if filename:
            suffix = filename.split(".")[-1]
            save_path = osp.join("images/tmp", "tmp_upload." + suffix)
            shutil.copy(filename, save_path)
            # 应该调整一下图片的大小,然后统一防在一起
            im0 = cv2.imread(save_path)
            resize_scale = self.output_size / im0.shape[0]
            im0 = cv2.resize(im0, (0, 0), fx=resize_scale, fy=resize_scale)
            cv2.imwrite("images/tmp/upload_show_result.jpg", im0)
            # self.right_img.setpixmap(qpixmap("images/tmp/single_result.jpg"))
            self.img2predict = filename
            self.left_img.setpixmap(qpixmap("images/tmp/upload_show_result.jpg"))
            # todo 上传图片之后右侧的图片重置,
            self.right_img.setpixmap(qpixmap("images/ui/right.jpeg"))

    '''
    ***检测图片***
    '''
    def detect_img(self):
        model = self.model
        output_size = self.output_size
        source = self.img2predict  # file/dir/url/glob, 0 for webcam
        imgsz = 640  # inference size (pixels)
        conf_thres = 0.25  # confidence threshold
        iou_thres = 0.45  # nms iou threshold
        max_det = 1000  # maximum detections per image
        device = self.device  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img = false  # show results
        save_txt = false  # save results to *.txt
        save_conf = false  # save confidences in --save-txt labels
        save_crop = false  # save cropped prediction boxes
        nosave = false  # do not save images/videos
        classes = none  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms = false  # class-agnostic nms
        augment = false  # ugmented inference
        visualize = false  # visualize features
        line_thickness = 3  # bounding box thickness (pixels)
        hide_labels = false  # hide labels
        hide_conf = false  # hide confidences
        half = false  # use fp16 half-precision inference
        dnn = false  # use opencv dnn for onnx inference
        print(source)
        if source == "":
            qmessagebox.warning(self, "请上传", "请先上传图片再进行检测")
        else:
            source = str(source)
            device = select_device(self.device)
            webcam = false
            stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
            imgsz = check_img_size(imgsz, s=stride)  # check image size
            save_img = not nosave and not source.endswith('.txt')  # save inference images
            # dataloader
            if webcam:
                view_img = check_imshow()
                cudnn.benchmark = true  # set true to speed up constant image size inference
                dataset = loadstreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
                bs = len(dataset)  # batch_size
            else:
                dataset = loadimages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
                bs = 1  # batch_size
            vid_path, vid_writer = [none] * bs, [none] * bs
            # run inference
            if pt and device.type != 'cpu':
                model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters())))  # warmup
            dt, seen = [0.0, 0.0, 0.0], 0
            for path, im, im0s, vid_cap, s in dataset:
                t1 = time_sync()
                im = torch.from_numpy(im).to(device)
                im = im.half() if half else im.float()  # uint8 to fp16/32
                im /= 255  # 0 - 255 to 0.0 - 1.0
                if len(im.shape) == 3:
                    im = im[none]  # expand for batch dim
                t2 = time_sync()
                dt[0] += t2 - t1
                # inference
                # visualize = increment_path(save_dir / path(path).stem, mkdir=true) if visualize else false
                pred = model(im, augment=augment, visualize=visualize)
                t3 = time_sync()
                dt[1] += t3 - t2
                # nms
                pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
                dt[2] += time_sync() - t3
                # second-stage classifier (optional)
                # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
                # process predictions
                for i, det in enumerate(pred):  # per image
                    seen += 1
                    if webcam:  # batch_size >= 1
                        p, im0, frame = path[i], im0s[i].copy(), dataset.count
                        s += f'{i}: '
                    else:
                        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                    p = path(p)  # to path
                    s += '%gx%g ' % im.shape[2:]  # print string
                    gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                    imc = im0.copy() if save_crop else im0  # for save_crop
                    annotator = annotator(im0, line_width=line_thickness, example=str(names))
                    if len(det):
                        # rescale boxes from img_size to im0 size
                        det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                        # print results
                        for c in det[:, -1].unique():
                            n = (det[:, -1] == c).sum()  # detections per class
                            s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                        # write results
                        for *xyxy, conf, cls in reversed(det):
                            if save_txt:  # write to file
                                xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
                                    -1).tolist()  # normalized xywh
                                line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                                # with open(txt_path + '.txt', 'a') as f:
                                #     f.write(('%g ' * len(line)).rstrip() % line + '\n')

                            if save_img or save_crop or view_img:  # add bbox to image
                                c = int(cls)  # integer class
                                label = none if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                                annotator.box_label(xyxy, label, color=colors(c, true))
                                # if save_crop:
                                #     save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
                                #                  bgr=true)
                    # print time (inference-only)
                    logger.info(f'{s}done. ({t3 - t2:.3f}s)')
                    # stream results
                    im0 = annotator.result()
                    # if view_img:
                    #     cv2.imshow(str(p), im0)
                    #     cv2.waitkey(1)  # 1 millisecond
                    # save results (image with detections)
                    resize_scale = output_size / im0.shape[0]
                    im0 = cv2.resize(im0, (0, 0), fx=resize_scale, fy=resize_scale)
                    cv2.imwrite("images/tmp/single_result.jpg", im0)
                    # 目前的情况来看,应该只是ubuntu下会出问题,但是在windows下是完整的,所以继续
                    self.right_img.setpixmap(qpixmap("images/tmp/single_result.jpg"))

    # 视频检测,逻辑基本一致,有两个功能,分别是检测摄像头的功能和检测视频文件的功能,先做检测摄像头的功能。

    '''
    ### 界面关闭事件 ### 
    '''
    def closeevent(self, event):
        reply = qmessagebox.question(self,
                                     'quit',
                                     "are you sure?",
                                     qmessagebox.yes | qmessagebox.no,
                                     qmessagebox.no)
        if reply == qmessagebox.yes:
            self.close()
            event.accept()
        else:
            event.ignore()

    '''
    ### 视频关闭事件 ### 
    '''

    def open_cam(self):
        self.webcam_detection_btn.setenabled(false)
        self.mp4_detection_btn.setenabled(false)
        self.vid_stop_btn.setenabled(true)
        self.vid_source = '0'
        self.webcam = true
        th = threading.thread(target=self.detect_vid)
        th.start()

    '''
    ### 开启视频文件检测事件 ### 
    '''

    def open_mp4(self):
        filename, filetype = qfiledialog.getopenfilename(self, 'choose file', '', '*.mp4 *.avi')
        if filename:
            self.webcam_detection_btn.setenabled(false)
            self.mp4_detection_btn.setenabled(false)
            # self.vid_stop_btn.setenabled(true)
            self.vid_source = filename
            self.webcam = false
            th = threading.thread(target=self.detect_vid)
            th.start()

    '''
    ### 视频开启事件 ### 
    '''

    # 视频和摄像头的主函数是一样的,不过是传入的source不同罢了
    def detect_vid(self):
        # pass
        model = self.model
        output_size = self.output_size
        # source = self.img2predict  # file/dir/url/glob, 0 for webcam
        imgsz = 640  # inference size (pixels)
        conf_thres = 0.25  # confidence threshold
        iou_thres = 0.45  # nms iou threshold
        max_det = 1000  # maximum detections per image
        # device = self.device  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img = false  # show results
        save_txt = false  # save results to *.txt
        save_conf = false  # save confidences in --save-txt labels
        save_crop = false  # save cropped prediction boxes
        nosave = false  # do not save images/videos
        classes = none  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms = false  # class-agnostic nms
        augment = false  # ugmented inference
        visualize = false  # visualize features
        line_thickness = 3  # bounding box thickness (pixels)
        hide_labels = false  # hide labels
        hide_conf = false  # hide confidences
        half = false  # use fp16 half-precision inference
        dnn = false  # use opencv dnn for onnx inference
        source = str(self.vid_source)
        webcam = self.webcam
        device = select_device(self.device)
        stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        save_img = not nosave and not source.endswith('.txt')  # save inference images
        # dataloader
        if webcam:
            view_img = check_imshow()
            cudnn.benchmark = true  # set true to speed up constant image size inference
            dataset = loadstreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
            bs = len(dataset)  # batch_size
        else:
            dataset = loadimages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
            bs = 1  # batch_size
        vid_path, vid_writer = [none] * bs, [none] * bs
        # run inference
        if pt and device.type != 'cpu':
            model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters())))  # warmup
        dt, seen = [0.0, 0.0, 0.0], 0
        for path, im, im0s, vid_cap, s in dataset:
            t1 = time_sync()
            im = torch.from_numpy(im).to(device)
            im = im.half() if half else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[none]  # expand for batch dim
            t2 = time_sync()
            dt[0] += t2 - t1
            # inference
            # visualize = increment_path(save_dir / path(path).stem, mkdir=true) if visualize else false
            pred = model(im, augment=augment, visualize=visualize)
            t3 = time_sync()
            dt[1] += t3 - t2
            # nms
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
            dt[2] += time_sync() - t3
            # second-stage classifier (optional)
            # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
            # process predictions
            for i, det in enumerate(pred):  # per image
                seen += 1
                if webcam:  # batch_size >= 1
                    p, im0, frame = path[i], im0s[i].copy(), dataset.count
                    s += f'{i}: '
                else:
                    p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                p = path(p)  # to path
                # save_path = str(save_dir / p.name)  # im.jpg
                # txt_path = str(save_dir / 'labels' / p.stem) + (
                #     '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
                s += '%gx%g ' % im.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                imc = im0.copy() if save_crop else im0  # for save_crop
                annotator = annotator(im0, line_width=line_thickness, example=str(names))
                if len(det):
                    # rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                    # print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    # write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(
                                -1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                            # with open(txt_path + '.txt', 'a') as f:
                            #     f.write(('%g ' * len(line)).rstrip() % line + '\n')

                        if save_img or save_crop or view_img:  # add bbox to image
                            c = int(cls)  # integer class
                            label = none if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                            annotator.box_label(xyxy, label, color=colors(c, true))
                            # if save_crop:
                            #     save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg',
                            #                  bgr=true)
                # print time (inference-only)
                logger.info(f'{s}done. ({t3 - t2:.3f}s)')
                # stream results
                # save results (image with detections)
                im0 = annotator.result()
                frame = im0
                resize_scale = output_size / frame.shape[0]
                frame_resized = cv2.resize(frame, (0, 0), fx=resize_scale, fy=resize_scale)
                cv2.imwrite("images/tmp/single_result_vid.jpg", frame_resized)
                self.vid_img.setpixmap(qpixmap("images/tmp/single_result_vid.jpg"))
                # self.vid_img
                # if view_img:
                # cv2.imshow(str(p), im0)
                # self.vid_img.setpixmap(qpixmap("images/tmp/single_result_vid.jpg"))
                # cv2.waitkey(1)  # 1 millisecond
            if cv2.waitkey(25) & self.stopevent.is_set() == true:
                self.stopevent.clear()
                self.webcam_detection_btn.setenabled(true)
                self.mp4_detection_btn.setenabled(true)
                self.reset_vid()
                break
        # self.reset_vid()

    '''
    ### 界面重置事件 ### 
    '''

    def reset_vid(self):
        self.webcam_detection_btn.setenabled(true)
        self.mp4_detection_btn.setenabled(true)
        self.vid_img.setpixmap(qpixmap("images/ui/up.jpeg"))
        self.vid_source = '0'
        self.webcam = true

    '''
    ### 视频重置事件 ### 
    '''

    def close_vid(self):
        self.stopevent.set()
        self.reset_vid()


if __name__ == "__main__":
    app = qapplication(sys.argv)
    mainwindow = mainwindow()
    mainwindow.show()
    sys.exit(app.exec_())

以上就是基于python实现简单的人脸识别系统的详细内容,更多关于python人脸识别系统的资料请关注其它相关文章!