#include "libmemcached/memcached.h"
using namespace std;
uint32_t item_size = 0;
uint32_t loop_num = 0;
bool single_server = false;
std::string local_ip;
std::map<:string uint32_t> servers;
int64_t getCurrentTime()
{
struct timeval tval;
gettimeofday(&tval, NULL);
return (tval.tv_sec * 1000000LL + tval.tv_usec);
}
memcached_st* mc_init()
{
memcached_st * mc = memcached_create(NULL);
if (mc == NULL)
{
cout ::iterator iter;
for (iter = servers.begin(); iter != servers.end(); ++iter)
{
if (single_server && iter->first != local_ip)
{
continue;
}
memcached_return rc = memcached_server_add(mc, iter->first.c_str(), iter->second);
if(rc != MEMCACHED_SUCCESS)
{
cout first first
测试发现二者的结果是相背的。shell脚本set 1000次8KB的item,只要3s左右,平均需要3ms。而C++版本则需要39s左右,平均耗时39ms。照理说shell脚本需要不断连接服务器和启动nc进程,应该更慢才对。我用ltrace跟踪了一下,发现8KB的数据需要发送两次,两次write都是非常快的,但是等memcached返回时用了很多时间,主要的时间就耗费在这个地方。
23:32:37.069922 [0x401609]
memcached_set(0x19076200, 0x7fffdad68560, 32, 0x1907a570, 8192
23:32:37.070034 [0x3f280c5f80]
SYS_write(3, "set 29 0 600
8192\r\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"..., 8196) = 8196
23:32:37.071657 [0x3f280c5f80]
SYS_write(3, "aaaaaaaaaaaaaaa\r\n", 17) = 17
23:32:37.071741 [0x3f280c5f00]
SYS_read(3, "STORED\r\n", 8196) = 8 (39ms)
和剑豪讨论下之后,剑豪马上去grep了一把代码,发现原来libmemcached居然有MEMCACHED_MAX_BUFFER这样一个常量,其值为8196。并且它还没有对应的memcached_behavior_set函数。在memcached_constants.h中将其直接改成81960,然后就欣喜地发现cache_put_latency从7ms降低到1ms左右。
问题完美虽然地解决了,但是意犹未尽,于是想搞明白为什么会出现这种奇怪的现象。瓶颈貌似在服务器端,于是对memcached做了一些修改。在状态切换的时候加上一个精确到微秒的时间。
static int64_t getCurrentTime()
{
struct timeval tval;
gettimeofday(&tval, NULL);
return (tval.tv_sec * 1000000LL + tval.tv_usec);
}
static void conn_set_state(conn *c, enum conn_states state) {
assert(c != NULL);
assert(state >= conn_listening && state state) {
if (settings.verbose > 2) {
fprintf(stderr, "%d: going from %s to %s, time: %lu\n",
c->sfd, state_text(c->state),
state_text(state), getCurrentTime());
}
c->state = state;
if (state == conn_write || state == conn_mwrite) {
MEMCACHED_PROCESS_COMMAND_END(c->sfd, c->wbuf, c->wbytes);
}
}
}
从打印的时间戳可以看出来,时间主要花在conn_nread状态处理代码中。最后定位到第二次read花费的时间非常多。
15: going from conn_waiting to conn_read, time: 1348466584440118
15: going from conn_read to conn_parse_cmd, time: 1348466584440155
NOT FOUND 98
>15 STORED
15: going from conn_nread to conn_write, time: 1348466584480099(36ms)
15: going from conn_write to conn_new_cmd, time: 1348466584480145
15: going from conn_new_cmd to conn_waiting, time: 1348466584480152
value的数据可能在conn_read中读完了,这个时候只需要memmove一下就好了。如果没有在conn_read状态中读完,那么就需要conn_nread自己来一次read了(因为套接字被设置成了异步,所以还可能需要多次read),关键就是这个read太慢了。
case conn_nread:
if (c->rlbytes == 0) {
complete_nread(c);
break;
}
/* first check if we have leftovers in the conn_read buffer */
if (c->rbytes > 0) {
int tocopy = c->rbytes > c->rlbytes ? c->rlbytes : c->rbytes;
if (c->ritem != c->rcurr) {
memmove(c->ritem, c->rcurr, tocopy);
}
c->ritem += tocopy;
c->rlbytes -= tocopy;
c->rcurr += tocopy;
c->rbytes -= tocopy;
if (c->rlbytes == 0) {
break;
}
}
/* now try reading from the socket */
res = read(c->sfd, c->ritem, c->rlbytes);
if (res > 0) {
pthread_mutex_lock(&c->thread->stats.mutex);
c->thread->stats.bytes_read += res;
pthread_mutex_unlock(&c->thread->stats.mutex);
if (c->rcurr == c->ritem) {
c->rcurr += res;
}
c->ritem += res;
c->rlbytes -= res;
break;
}
折腾了好久,在libmemcached的io_flush函数前后也打了不少时间戳,发现libmemcached发送数据是非常快的。突然灵感闪现,我想起来了TCP_NODELAY这个参数,于是在libmemcached memcached_connect.c文件中的set_socket_options函数中增加了这个参数(事实上set_socket_options函数里面可以设置TCP_NODELAY,没有仔细看)。
int flag = 1;
int error = setsockopt(ptr->fd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(flag) );
if (error == -1) {
printf("Couldn't setsockopt(TCP_NODELAY)\n");
exit(-1);
}else
{
printf("set setsockopt(TCP_NODELAY)\n");
}
在不改MEMCACHED_MAX_BUFFER的情况下,现在set 100KB的item也是一瞬间的事情了。不过新的困惑又出现了,Nagle算法什么情况会起作用呢?为什么第一个包没被缓存,第二个包一定会被缓存呢?
libmemcached发送一个set命令是分成三部分的,首先是header(set 0 0 600 8192\r\n,共18个字节),然后是value(8192个字节),最后是’\r\n’(两个字节),一共是8212个字节。memcached在conn_read状态一共能读取2048+2048+4096+8196=16KB的数据,因此对于8KB的数据是完全可以在conn_read状态读完的。通过在conn_read状态处理的代码中增加下面的打印语句可以发现有些情况下,conn_read最后一次只读取了4个字节(正常情况应该是2048+2048+4096+20),剩下的16个字节放到conn_nread中读了。
res = read(c->sfd, c->rbuf + c->rbytes, avail);
if (res > 0) {
char buf[10240] = {0};
sprintf(buf, "%.*s", res, c->rbuf + c->rbytes);
printf("avail=%d, read=%d, str=%s\n", avail, res, buf);
未设置TCP_NODELAY选项时,使用netstat可以看到客户端socket的Send-Q一直会维持在8214和8215之间。
tcp 0 8215 10.232.42.91:59836 10.232.42.91:11211 ESTABLISHED 25800/t
设置TCP_NODELAY选项时,客户端socket的Send-Q就一直为0了。
tcp 0 0 10.232.42.91:59890 10.232.42.91:11211 ESTABLISHED 26554/t.quick
原文地址:libmemcached的MEMCACHED_MAX_BUFFER问题, 感谢原作者分享。