【原创】(二)Linux物理内存初始化
背景
-
read the fucking source code!
--by 鲁迅 -
a picture is worth a thousand words.
--by 高尔基
说明:
- kernel版本:4.14
- arm64处理器,contex-a53,双核
- 使用工具:source insight 3.5, visio
1. 介绍
让我们思考几个朴素的问题?
- 系统是怎么知道物理内存的?
- 在内存管理真正初始化之前,内核的代码执行需要分配内存该怎么处理?
我们先来尝试回答第一个问题,看过dts
文件的同学应该见过memory
的节点,以arch/arm64/boot/dts/freescale/fsl-ls208xa.dtsi
为例:
memory@80000000 { device_type = "memory"; reg = <0x00000000 0x80000000 0 0x80000000>; /* dram space - 1, size : 2 gb dram */ };
这个节点描述了内存的起始地址及大小,事实上内核在解析dtb
文件时会去读取该memory
节点的内容,从而将检测到的内存注册进系统。
那么新的问题又来了?uboot会将kernel image
和dtb
拷贝到内存中,并且将dtb物理地址
告知kernel
,kernel
需要从该物理地址上读取到dtb
文件并解析,才能得到最终的内存信息,dtb
的物理地址需要映射到虚拟地址上才能访问,但是这个时候paging_init
还没有调用,也就是说物理地址的映射还没有完成,那该怎么办呢?没错,fixed map
机制出现了。
第二个问题答案:当所有物理内存添加进系统后,在mm_init
之前,系统会使用memblock
模块来对内存进行管理。
开启探索之旅吧!
2. early_fixmap_init
简单来说,fixed map
指的是虚拟地址中的一段区域,在该区域中所有的线性地址是在编译阶段就确定好的,这些虚拟地址需要在boot
阶段去映射到物理地址上。
来张图片看看虚拟地址空间:
图中fixed: 0xffffffbefe7fd000 - 0xffffffbefec00000
,描述的就是fixed map
的区域。
那么这段区域中的详细一点的布局是怎样呢?看看arch/arm64/include/asm/fixmap.h
中的enum fixed_address
结构就清晰了,图来了:
从图中可以看出,如果要访问dtb
所在的物理地址,那么需要将该物理地址映射到fixed map
中的区域,然后访问该区域中的虚拟地址即可。访问io
空间也是一样的道理,下文也会讲述到。
那么来看看early_fixmap_init
函数的关键代码吧:
void __init early_fixmap_init(void) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; unsigned long addr = fixaddr_start; /* (1) */ pgd = pgd_offset_k(addr); /* (2) */ if (config_pgtable_levels > 3 && !(pgd_none(*pgd) || pgd_page_paddr(*pgd) == __pa_symbol(bm_pud))) { /* * we only end up here if the kernel mapping and the fixmap * share the top level pgd entry, which should only happen on * 16k/4 levels configurations. */ bug_on(!is_enabled(config_arm64_16k_pages)); pud = pud_offset_kimg(pgd, addr); } else { if (pgd_none(*pgd)) __pgd_populate(pgd, __pa_symbol(bm_pud), pud_type_table); /* (3) */ pud = fixmap_pud(addr); } if (pud_none(*pud)) __pud_populate(pud, __pa_symbol(bm_pmd), pmd_type_table); /* (4) */ pmd = fixmap_pmd(addr); __pmd_populate(pmd, __pa_symbol(bm_pte), pmd_type_table); /* (5) */ ...... }
关键点:
-
fixaddr_start
,定义了fixed map
区域的起始地址,位于arch/arm64/include/asm/fixmap.h
中; -
pgd_offset_k(addr)
,获取addr
地址对应pgd全局页表中的entry
,而这个pgd全局页表正是swapper_pg_dir
全局页表; - 将
bm_pud
的物理地址写到pgd全局页目录表中; - 将
bm_pmd
的物理地址写到pud页目录表中; - 将
bm_pte
的物理地址写到pmd页表目录表中;
bm_pud/bm_pmd/bm_pte
是三个全局数组,相当于是中间的页表,存放各级页表的entry
,定义如下:
static pte_t bm_pte[ptrs_per_pte] __page_aligned_bss; static pmd_t bm_pmd[ptrs_per_pmd] __page_aligned_bss __maybe_unused; static pud_t bm_pud[ptrs_per_pud] __page_aligned_bss __maybe_unused;
事实上,early_fixmap_init
只是建立了一个映射的框架,具体的物理地址和虚拟地址的映射没有去填充,这个是由使用者具体在使用时再去填充对应的pte entry
。比如像fixmap_remap_fdt()
函数,就是典型的填充pte entry
的过程,完成最后的一步映射,然后才能读取dtb
文件。
来一张图片就懂了,是透彻的懂了:
3. early_ioremap_init
如果在boot早期需要操作io设备
的话,那么ioremap
就用上场了,由于跟实际的内存管理关系不太大,不再太深入的分析。
简单来说,ioremap
的空间为7 * 256k
的区域,保存在slot_vir[]
数组中,当需要进行io操作的时候,最终会调用到__early_ioremap
函数,在该函数中去填充对应的pte entry
,从而完成最终的虚拟地址和物理地址的映射。
4. memblock
上文讲的内容都只是铺垫,为了能正确访问dtb
文件并且解析得到物理地址信息。从入口到最终添加的调用过程如下图:
所以,这个章节的重点就是memblock
模块,这个是早期的内存分配管理器,我不禁想起了之前在nuttx
中的内存池实现了,细节已然不太清晰了,但是框架性的思维都大同小异。
4.1 结构体
总共由三个数据结构来描述:
-
struct memblock
定义了一个全局变量,用来维护所有的物理内存; -
struct memblock_type
代表系统中的内存类型,包括实际使用的内存和保留的内存; -
struct memblock_region
用来描述具体的内存区域,包含在struct memblock_type
中的regions
数组中,最多可以存放128个。
直接上个代码吧:
static struct memblock_region memblock_memory_init_regions[init_memblock_regions] __initdata_memblock; static struct memblock_region memblock_reserved_init_regions[init_memblock_regions] __initdata_memblock; #ifdef config_have_memblock_phys_map static struct memblock_region memblock_physmem_init_regions[init_physmem_regions] __initdata_memblock; #endif struct memblock memblock __initdata_memblock = { .memory.regions = memblock_memory_init_regions, .memory.cnt = 1, /* empty dummy entry */ .memory.max = init_memblock_regions, .memory.name = "memory", .reserved.regions = memblock_reserved_init_regions, .reserved.cnt = 1, /* empty dummy entry */ .reserved.max = init_memblock_regions, .reserved.name = "reserved", #ifdef config_have_memblock_phys_map .physmem.regions = memblock_physmem_init_regions, .physmem.cnt = 1, /* empty dummy entry */ .physmem.max = init_physmem_regions, .physmem.name = "physmem", #endif .bottom_up = false, .current_limit = memblock_alloc_anywhere, };
定义的memblock
为全局变量,在定义的时候就进行了初始化。初始化的时候,regions
指向的也是静态全局的数组,其中数组的大小为init_memblock_regions
,也就是128个,限制了这些内存块的个数了,实际在代码中可以看到,当超过这个数值时,数组会以2倍的速度动态扩大。
初始化完了后,大体是这个样子的:
4.2 memblock_add/memblock_remove
memblock
子模块,基本的逻辑都是围绕内存的添加和移除操作来展开,最终是通过调用memblock_add_range/memblock_remove_range
来实现的。
-
memblock_add_range
:
图中的左侧是函数的执行流程图,执行效果是右侧部分。右侧部分画的是一个典型的情况,实际的情况可能有多种,但是核心的逻辑都是对插入的region
进行判断,如果出现了物理地址范围重叠的部分,那就进行split
操作,最终对具有相同flag
的region
进行merge
操作。
-
memblock_remove_range
该函数执行的一个典型case效果如下图所示:
假如现在需要移除掉一片区域,而该区域跨越了多个region
,则会先调用memblock_isolate_range
来对这片区域进行切分,最后再调用memblock_isolate_range
对区域范围内的region
进行移除操作。
当调用memblock_alloc
函数进行地址分配时,最后也是调用memblock_add_range
来实现的,申请的这部分内存最终会添加到reserved
类型中,毕竟已经分配出去了,其他人也不应该使用了。
5. arm64_memblock_init
当物理内存都添加进系统之后,arm64_memblock_init
会对整个物理内存进行整理,主要的工作就是将一些特殊的区域添加进reserved
内存中。函数执行完后,如下图所示:
- 其中浅绿色的框表示的都是保留的内存区域, 剩下的部分就是可以实际去使用的内存了。
物理内存大体面貌就有了,后续就需要进行内存的页表映射,完成实际的物理地址到虚拟地址的映射了。
那就待续吧。
上一篇: LVS介绍及相关配置
推荐阅读
-
【原创】(十三)Linux内存管理之vma/malloc/mmap
-
【原创】(十)Linux内存管理 - zoned page frame allocator - 5
-
【原创】(十四)Linux内存管理之page fault处理
-
【原创】(二)Linux物理内存初始化
-
【原创】(八)Linux内存管理 - zoned page frame allocator - 3
-
【原创】(十二)Linux内存管理之vmap与vmalloc
-
【原创】(九)Linux内存管理 - zoned page frame allocator - 4
-
【原创】(四)Linux内存模型之Sparse Memory Model
-
【原创】(十六)Linux内存管理之CMA
-
【原创】(五)Linux内存管理zone_sizes_init