欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

有源汇上下界最大(小)流

程序员文章站 2022-05-25 19:42:51
例题 loj116 >给出一个有源汇点的有向图。每条边有最大流量和最小流量。现在需要求出从源点到汇点的最大流可以是多少。 前置知识 ......

有源汇上下界最大流

例题

给出一个有源汇点的有向图。每条边有最大流量和最小流量。现在需要求出从源点到汇点的最大流可以是多少。

前置知识

思路

先回顾有源汇上下界可行流干了些什么。
其实可行流就是找到了一种满足流量下界的方案。
在满足了流量下界之后,可以发现还有一些残余的*流量(可选可不选)
于是我们在之前的残余网络上再跑一边\(dinic\)。这次不算超级源汇点,也不算从\(t\)\(s\)添的那条边。
这样将在可行流种算出来的流量加上后来跑出来的流量就是答案了。

代码

/*
* @author: wxyww
* @date:   2019-02-10 15:13:47
* @last modified time: 2019-02-10 16:31:08
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<queue>
#include<cstring>
#include<bitset>
using namespace std;
typedef long long ll;
const int inf = 1e9,n = 100000;
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
}
struct node {
    int v,nxt,w;
}e[n];
int head[n],ejs = 1;
void add(int u,int v,int w) {
    e[++ejs].v = v;e[ejs].w = w;e[ejs].nxt = head[u];head[u] = ejs;
    e[++ejs].v = u;e[ejs].w = 0;e[ejs].nxt = head[v];head[v] = ejs;
}
int dep[n];
queue<int>q;
int s,t;
int low[n],rd[n],cd[n],ans,cur[n];
int bfs() {
    memset(dep,0,sizeof(dep));
    while(!q.empty()) q.pop();
    dep[s] = 1;q.push(s);
    while(!q.empty()) {
        int u = q.front();q.pop();
        for(int i = head[u];i;i = e[i].nxt) {
            int v = e[i].v;
            if(!dep[v] && e[i].w) {
                q.push(v);
                dep[v] = dep[u] + 1;
                if(v == t) return 1;
            }
        }
    }
    return 0;
}
int dfs(int u,int now) {
    if(u == t) return now;
    int ret = 0;
    for(int &i = cur[u];i;i = e[i].nxt) {
        int v = e[i].v;
        if(dep[v] == dep[u] + 1 && e[i].w) {
            int k = dfs(v,min(now - ret,e[i].w));
            e[i].w -= k;
            e[i ^ 1].w += k;
            ret += k;
            if(now == ret) return ret;
        }
    }
    return ret;
}
int dinic() {
    int ans = 0;
    while(bfs()) {
        memcpy(cur,head,sizeof(cur));
        ans += dfs(s,inf);
    }
    return ans;
}
int main() {
    int n = read(),m = read();
    int ss = read(),tt = read();
    add(tt,ss,inf);
    s = n + 1,t = s + 1;
    for(int i = 1;i <= m;++i) {
        int u = read(),v = read(),low = read(), up = read();
        add(u,v,up - low);
        rd[v] += low;
        cd[u] += low;
    }
    for(int i = 1;i <= n;++i) {
        int d = rd[i] - cd[i];
        if(d > 0) ans += d,add(s,i,d);
        if(d < 0) add(i,t,-d);
    }
    if(ans != dinic()) {
        puts("please go home to sleep");
        return 0;
    }
    for(int i = head[s];i;i = e[i].nxt) 
        e[i].w = e[i ^ 1].w = 0;
    for(int i = head[t];i;i = e[i].nxt) e[i].w = e[i ^ 1].w = 0;
    ans = e[3].w;
    e[3].w = e[2].w = 0;
    s = ss;t = tt;
    ans += dinic();
    cout<<ans;
    return 0;
}

有源汇上下界最小流

例题

给出一个有源汇点的有向图。每条边有最大流量和最小流量。现在需要求出在从源点到汇点的最小流可以是多少。

思路

和上面的最大流类似。
我们先跑一边可行流。然后就满足下界了。然后我们不想要那么多流量,也就是说我们想要退流。
怎么退流呢。考虑反向边,反向边中加上的流量其实是正边中减去的流量。所以从t到s跑一遍最大流。然后用之前可行流中的流量减去即可。
代码与上面极度类似,只要改标注的两个地方就行了。

代码

/*
* @author: wxyww
* @date:   2019-02-10 15:13:47
* @last modified time: 2019-02-10 16:47:20
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<queue>
#include<cstring>
#include<bitset>
using namespace std;
typedef long long ll;
const int inf = 1e9,n = 1000000;
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
}
struct node {
    int v,nxt,w;
}e[n];
int head[n],ejs = 1;
void add(int u,int v,int w) {
    e[++ejs].v = v;e[ejs].w = w;e[ejs].nxt = head[u];head[u] = ejs;
    e[++ejs].v = u;e[ejs].w = 0;e[ejs].nxt = head[v];head[v] = ejs;
}
int dep[n];
queue<int>q;
int s,t;
int low[n],rd[n],cd[n],ans,cur[n];
int bfs() {
    memset(dep,0,sizeof(dep));
    while(!q.empty()) q.pop();
    dep[s] = 1;q.push(s);
    while(!q.empty()) {
        int u = q.front();q.pop();
        for(int i = head[u];i;i = e[i].nxt) {
            int v = e[i].v;
            if(!dep[v] && e[i].w) {
                q.push(v);
                dep[v] = dep[u] + 1;
                if(v == t) return 1;
            }
        }
    }
    return 0;
}
int dfs(int u,int now) {
    if(u == t) return now;
    int ret = 0;
    for(int &i = cur[u];i;i = e[i].nxt) {
        int v = e[i].v;
        if(dep[v] == dep[u] + 1 && e[i].w) {
            int k = dfs(v,min(now - ret,e[i].w));
            e[i].w -= k;
            e[i ^ 1].w += k;
            ret += k;
            if(now == ret) return ret;
        }
    }
    return ret;
}
int dinic() {
    int ans = 0;
    while(bfs()) {
        memcpy(cur,head,sizeof(cur));
        ans += dfs(s,inf);
    }
    return ans;
}
int main() {
    int n = read(),m = read();
    int ss = read(),tt = read();
    add(tt,ss,inf);
    s = n + 1,t = s + 1;
    for(int i = 1;i <= m;++i) {
        int u = read(),v = read(),low = read(), up = read();
        add(u,v,up - low);
        rd[v] += low;
        cd[u] += low;
    }
    for(int i = 1;i <= n;++i) {
        int d = rd[i] - cd[i];
        if(d > 0) ans += d,add(s,i,d);
        if(d < 0) add(i,t,-d);
    }
    if(ans != dinic()) {
        puts("please go home to sleep");
        return 0;
    }
    for(int i = head[s];i;i = e[i].nxt) 
        e[i].w = e[i ^ 1].w = 0;
    for(int i = head[t];i;i = e[i].nxt) e[i].w = e[i ^ 1].w = 0;
    ans = e[3].w;
    e[3].w = e[2].w = 0;
    s = tt;t = ss;//!!!
    ans -= dinic();//!!!
    cout<<ans;
    return 0;
}