Hadoop2.7.1-WordCount Demo
程序员文章站
2022-05-25 14:51:49
...
package mytest.hadoop.mr1; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { //StringTokenizer 是出于兼容性的原因而被保留的遗留类 StringTokenizer itr = new StringTokenizer(value.toString());//被分割对象str,分隔符采取默认分割,java默认的分隔符是“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)”。默认的话,所有的分隔符都会同时起作用。 while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } System.out.println("otherArgs.length="+otherArgs.length); for (int i = 0; i < otherArgs.length; ++i) { System.out.println(i+"--"+otherArgs[i].toString()); } System.out.println("args over"); //job.jar在job路径下的位置 conf.set("mapred.jar","E:\\wc.jar");//必需的!!!! //跨平台提交作业 conf.set("mapreduce.app-submission.cross-platform","true");//必需的!!!!$JAVA_HOME VS %JAVA_HOME% //分布式文件 URI conf.set("fs.defaultFS", "hdfs://master:9000");//必需的!!!! //conf.set("mapreduce.jobtracker.address", "master"); conf.set("mapreduce.framework.name", "yarn"); //必需的!!!! conf.set("yarn.resourcemanager.address", "master:8032"); //必需的!!!! Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); //设置map job.setMapperClass(TokenizerMapper.class); //设置Combine.Combiner使得map task与reduce task之间的数据传输量大大减小,可明显提高性能。大多数情况下,Combiner与Reducer相同 job.setCombinerClass(IntSumReducer.class); //设置reduce job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); //设置输入输出 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job,new Path(otherArgs[1])); System.out.println("222-------------111"); //提交作业并等待其执行结束。在这里主要通过submit()方法提交一个作业。 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
上一篇: Storm的wordcount实战示例
下一篇: 启动MySQL报错_MySQL