欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Hadoop2.7.1-WordCount Demo

程序员文章站 2022-05-25 14:51:49
...
package mytest.hadoop.mr1;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {

  public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{
    
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
      
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      //StringTokenizer 是出于兼容性的原因而被保留的遗留类
      StringTokenizer itr = new StringTokenizer(value.toString());//被分割对象str,分隔符采取默认分割,java默认的分隔符是“空格”、“制表符(‘\t’)”、“换行符(‘\n’)”、“回车符(‘\r’)”。默认的话,所有的分隔符都会同时起作用。
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }
  
  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2) {
      System.err.println("Usage: wordcount <in> [<in>...] <out>");
      System.exit(2);
    }
    System.out.println("otherArgs.length="+otherArgs.length);
    for (int i = 0; i < otherArgs.length; ++i) {
        System.out.println(i+"--"+otherArgs[i].toString());
      }
    System.out.println("args over");
    
    //job.jar在job路径下的位置
    conf.set("mapred.jar","E:\\wc.jar");//必需的!!!!
    //跨平台提交作业
    conf.set("mapreduce.app-submission.cross-platform","true");//必需的!!!!$JAVA_HOME VS %JAVA_HOME%
    //分布式文件 URI
    conf.set("fs.defaultFS", "hdfs://master:9000");//必需的!!!!
    //conf.set("mapreduce.jobtracker.address", "master"); 
    conf.set("mapreduce.framework.name", "yarn");  //必需的!!!!
    conf.set("yarn.resourcemanager.address", "master:8032"); //必需的!!!!
    
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    //设置map
    job.setMapperClass(TokenizerMapper.class);
    //设置Combine.Combiner使得map task与reduce task之间的数据传输量大大减小,可明显提高性能。大多数情况下,Combiner与Reducer相同
    job.setCombinerClass(IntSumReducer.class);
    //设置reduce
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    //设置输入输出
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
    System.out.println("222-------------111");
    //提交作业并等待其执行结束。在这里主要通过submit()方法提交一个作业。
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}