python实现决策树分类
程序员文章站
2022-05-25 14:16:45
上一篇博客主要介绍了决策树的原理,这篇主要介绍他的实现,代码环境python 3.4,实现的是id3算法,首先为了后面matplotlib的绘图方便,我把原来的中文数据集变...
上一篇博客主要介绍了决策树的原理,这篇主要介绍他的实现,代码环境python 3.4,实现的是id3算法,首先为了后面matplotlib的绘图方便,我把原来的中文数据集变成了英文。
原始数据集:
变化后的数据集在程序代码中体现,这就不截图了
构建决策树的代码如下:
#coding :utf-8 ''' 2017.6.25 author :erin function: "decesion tree" id3 ''' import numpy as np import pandas as pd from math import log import operator def load_data(): #data=np.array(data) data=[['teenager' ,'high', 'no' ,'same', 'no'], ['teenager', 'high', 'no', 'good', 'no'], ['middle_aged' ,'high', 'no', 'same', 'yes'], ['old_aged', 'middle', 'no' ,'same', 'yes'], ['old_aged', 'low', 'yes', 'same' ,'yes'], ['old_aged', 'low', 'yes', 'good', 'no'], ['middle_aged', 'low' ,'yes' ,'good', 'yes'], ['teenager' ,'middle' ,'no', 'same', 'no'], ['teenager', 'low' ,'yes' ,'same', 'yes'], ['old_aged' ,'middle', 'yes', 'same', 'yes'], ['teenager' ,'middle', 'yes', 'good', 'yes'], ['middle_aged' ,'middle', 'no', 'good', 'yes'], ['middle_aged', 'high', 'yes', 'same', 'yes'], ['old_aged', 'middle', 'no' ,'good' ,'no']] features=['age','input','student','level'] return data,features def cal_entropy(dataset): ''' 输入data ,表示带最后标签列的数据集 计算给定数据集总的信息熵 {'是': 9, '否': 5} 0.9402859586706309 ''' numentries = len(dataset) labelcounts = {} for featvec in dataset: label = featvec[-1] if label not in labelcounts.keys(): labelcounts[label] = 0 labelcounts[label] += 1 entropy = 0.0 for key in labelcounts.keys(): p_i = float(labelcounts[key]/numentries) entropy -= p_i * log(p_i,2)#log(x,10)表示以10 为底的对数 return entropy def split_data(data,feature_index,value): ''' 划分数据集 feature_index:用于划分特征的列数,例如“年龄” value:划分后的属性值:例如“青少年” ''' data_split=[]#划分后的数据集 for feature in data: if feature[feature_index]==value: refeature=feature[:feature_index] refeature.extend(feature[feature_index+1:]) data_split.append(refeature) return data_split def choose_best_to_split(data): ''' 根据每个特征的信息增益,选择最大的划分数据集的索引特征 ''' count_feature=len(data[0])-1#特征个数4 #print(count_feature)#4 entropy=cal_entropy(data)#原数据总的信息熵 #print(entropy)#0.9402859586706309 max_info_gain=0.0#信息增益最大 split_fea_index = -1#信息增益最大,对应的索引号 for i in range(count_feature): feature_list=[fe_index[i] for fe_index in data]#获取该列所有特征值 ####################################### ''' print('feature_list') ['青少年', '青少年', '中年', '老年', '老年', '老年', '中年', '青少年', '青少年', '老年', '青少年', '中年', '中年', '老年'] 0.3467680694480959 #对应上篇博客中的公式 =(1)*5/14 0.3467680694480959 0.6935361388961918 ''' # print(feature_list) unqval=set(feature_list)#去除重复 pro_entropy=0.0#特征的熵 for value in unqval:#遍历改特征下的所有属性 sub_data=split_data(data,i,value) pro=len(sub_data)/float(len(data)) pro_entropy+=pro*cal_entropy(sub_data) #print(pro_entropy) info_gain=entropy-pro_entropy if(info_gain>max_info_gain): max_info_gain=info_gain split_fea_index=i return split_fea_index ################################################## def most_occur_label(labels): #sorted_label_count[0][0] 次数最多的类标签 label_count={} for label in labels: if label not in label_count.keys(): label_count[label]=0 else: label_count[label]+=1 sorted_label_count = sorted(label_count.items(),key = operator.itemgetter(1),reverse = true) return sorted_label_count[0][0] def build_decesion_tree(dataset,featnames): ''' 字典的键存放节点信息,分支及叶子节点存放值 ''' featname = featnames[:] ################ classlist = [featvec[-1] for featvec in dataset] #此节点的分类情况 if classlist.count(classlist[0]) == len(classlist): #全部属于一类 return classlist[0] if len(dataset[0]) == 1: #分完了,没有属性了 return vote(classlist) #少数服从多数 # 选择一个最优特征进行划分 bestfeat = choose_best_to_split(dataset) bestfeatname = featname[bestfeat] del(featname[bestfeat]) #防止下标不准 decisiontree = {bestfeatname:{}} # 创建分支,先找出所有属性值,即分支数 allvalue = [vec[bestfeat] for vec in dataset] specvalue = sorted(list(set(allvalue))) #使有一定顺序 for v in specvalue: copyfeatname = featname[:] decisiontree[bestfeatname][v] = build_decesion_tree(split_data(dataset,bestfeat,v),copyfeatname) return decisiontree
绘制可视化图的代码如下:
def getnumleafs(mytree): '计算决策树的叶子数' # 叶子数 numleafs = 0 # 节点信息 sides = list(mytree.keys()) firststr =sides[0] # 分支信息 seconddict = mytree[firststr] for key in seconddict.keys(): # 遍历所有分支 # 子树分支则递归计算 if type(seconddict[key]).__name__=='dict': numleafs += getnumleafs(seconddict[key]) # 叶子分支则叶子数+1 else: numleafs +=1 return numleafs def gettreedepth(mytree): '计算决策树的深度' # 最大深度 maxdepth = 0 # 节点信息 sides = list(mytree.keys()) firststr =sides[0] # 分支信息 seconddict = mytree[firststr] for key in seconddict.keys(): # 遍历所有分支 # 子树分支则递归计算 if type(seconddict[key]).__name__=='dict': thisdepth = 1 + gettreedepth(seconddict[key]) # 叶子分支则叶子数+1 else: thisdepth = 1 # 更新最大深度 if thisdepth > maxdepth: maxdepth = thisdepth return maxdepth import matplotlib.pyplot as plt decisionnode = dict(boxstyle="sawtooth", fc="0.8") leafnode = dict(boxstyle="round4", fc="0.8") arrow_args = dict(arrowstyle="<-") # ================================================== # 输入: # nodetxt: 终端节点显示内容 # centerpt: 终端节点坐标 # parentpt: 起始节点坐标 # nodetype: 终端节点样式 # 输出: # 在图形界面中显示输入参数指定样式的线段(终端带节点) # ================================================== def plotnode(nodetxt, centerpt, parentpt, nodetype): '画线(末端带一个点)' createplot.ax1.annotate(nodetxt, xy=parentpt, xycoords='axes fraction', xytext=centerpt, textcoords='axes fraction', va="center", ha="center", bbox=nodetype, arrowprops=arrow_args ) # ================================================================= # 输入: # cntrpt: 终端节点坐标 # parentpt: 起始节点坐标 # txtstring: 待显示文本内容 # 输出: # 在图形界面指定位置(cntrpt和parentpt中间)显示文本内容(txtstring) # ================================================================= def plotmidtext(cntrpt, parentpt, txtstring): '在指定位置添加文本' # 中间位置坐标 xmid = (parentpt[0]-cntrpt[0])/2.0 + cntrpt[0] ymid = (parentpt[1]-cntrpt[1])/2.0 + cntrpt[1] createplot.ax1.text(xmid, ymid, txtstring, va="center", ha="center", rotation=30) # =================================== # 输入: # mytree: 决策树 # parentpt: 根节点坐标 # nodetxt: 根节点坐标信息 # 输出: # 在图形界面绘制决策树 # =================================== def plottree(mytree, parentpt, nodetxt): '绘制决策树' # 当前树的叶子数 numleafs = getnumleafs(mytree) # 当前树的节点信息 sides = list(mytree.keys()) firststr =sides[0] # 定位第一棵子树的位置(这是蛋疼的一部分) cntrpt = (plottree.xoff + (1.0 + float(numleafs))/2.0/plottree.totalw, plottree.yoff) # 绘制当前节点到子树节点(含子树节点)的信息 plotmidtext(cntrpt, parentpt, nodetxt) plotnode(firststr, cntrpt, parentpt, decisionnode) # 获取子树信息 seconddict = mytree[firststr] # 开始绘制子树,纵坐标-1。 plottree.yoff = plottree.yoff - 1.0/plottree.totald for key in seconddict.keys(): # 遍历所有分支 # 子树分支则递归 if type(seconddict[key]).__name__=='dict': plottree(seconddict[key],cntrpt,str(key)) # 叶子分支则直接绘制 else: plottree.xoff = plottree.xoff + 1.0/plottree.totalw plotnode(seconddict[key], (plottree.xoff, plottree.yoff), cntrpt, leafnode) plotmidtext((plottree.xoff, plottree.yoff), cntrpt, str(key)) # 子树绘制完毕,纵坐标+1。 plottree.yoff = plottree.yoff + 1.0/plottree.totald # ============================== # 输入: # mytree: 决策树 # 输出: # 在图形界面显示决策树 # ============================== def createplot(intree): '显示决策树' # 创建新的图像并清空 - 无横纵坐标 fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) createplot.ax1 = plt.subplot(111, frameon=false, **axprops) # 树的总宽度 高度 plottree.totalw = float(getnumleafs(intree)) plottree.totald = float(gettreedepth(intree)) # 当前绘制节点的坐标 plottree.xoff = -0.5/plottree.totalw; plottree.yoff = 1.0; # 绘制决策树 plottree(intree, (0.5,1.0), '') plt.show() if __name__ == '__main__': data,features=load_data() split_fea_index=choose_best_to_split(data) newtree=build_decesion_tree(data,features) print(newtree) createplot(newtree) ''' {'age': {'old_aged': {'level': {'same': 'yes', 'good': 'no'}}, 'teenager': {'student': {'no': 'no', 'yes': 'yes'}}, 'middle_aged': 'yes'}} '''
结果如下:
怎么用决策树分类,将会在。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: Python绘制正余弦函数图像的方法