欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现随机梯度下降法

程序员文章站 2022-05-25 14:17:39
看这篇文章前强烈建议你看看上一篇: 一、为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有)  也就是说每次更新权值...

看这篇文章前强烈建议你看看上一篇:

一、为什么要提出随机梯度下降算法

注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有)

python实现随机梯度下降法

 也就是说每次更新权值python实现随机梯度下降法都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解。为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法。

二、核心思想

对于权值的更新不再通过遍历全部的数据集,而是选择其中的一个样本即可(对于程序员来说你的第一反应一定是:在这里需要一个随机函数来选择一个样本,不是吗?),一般来说其步长的选择比梯度下降法的步长要小一点,因为梯度下降法使用的是准确梯度,所以它可以朝着全局最优解(当问题为凸问题时)较大幅度的迭代下去,但是随机梯度法不行,因为它使用的是近似梯度,或者对于全局来说有时候它走的也许根本不是梯度下降的方向,故而它走的比较缓,同样这样带来的好处就是相比于梯度下降法,它不是那么容易陷入到局部最优解中去。

三、权值更新方式

python实现随机梯度下降法

(i表示样本标号下标,j表示样本维数下标)

四、代码实现(大体与梯度下降法相同,不同在于while循环中的内容)

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from matplotlib import style
 
 
#构造数据
def get_data(sample_num=1000):
 """
 拟合函数为
 y = 5*x1 + 7*x2
 :return:
 """
 x1 = np.linspace(0, 9, sample_num)
 x2 = np.linspace(4, 13, sample_num)
 x = np.concatenate(([x1], [x2]), axis=0).t
 y = np.dot(x, np.array([5, 7]).t) 
 return x, y
#梯度下降法
def sgd(samples, y, step_size=2, max_iter_count=1000):
 """
 :param samples: 样本
 :param y: 结果value
 :param step_size: 每一接迭代的步长
 :param max_iter_count: 最大的迭代次数
 :param batch_size: 随机选取的相对于总样本的大小
 :return:
 """
 #确定样本数量以及变量的个数初始化theta值
 
 m, var = samples.shape
 theta = np.zeros(2)
 y = y.flatten()
 #进入循环内
 loss = 1
 iter_count = 0
 iter_list=[]
 loss_list=[]
 theta1=[]
 theta2=[]
 #当损失精度大于0.01且迭代此时小于最大迭代次数时,进行
 while loss > 0.01 and iter_count < max_iter_count:
  loss = 0
  #梯度计算
  theta1.append(theta[0])
  theta2.append(theta[1])  
  #样本维数下标
  rand1 = np.random.randint(0,m,1)
  h = np.dot(theta,samples[rand1].t)
  #关键点,只需要一个样本点来更新权值
  for i in range(len(theta)):
   theta[i] =theta[i] - step_size*(1/m)*(h - y[rand1])*samples[rand1,i]
  #计算总体的损失精度,等于各个样本损失精度之和
  for i in range(m):
   h = np.dot(theta.t, samples[i])
   #每组样本点损失的精度
   every_loss = (1/(var*m))*np.power((h - y[i]), 2)
   loss = loss + every_loss
 
  print("iter_count: ", iter_count, "the loss:", loss)
  
  iter_list.append(iter_count)
  loss_list.append(loss)
  
  iter_count += 1
 plt.plot(iter_list,loss_list)
 plt.xlabel("iter")
 plt.ylabel("loss")
 plt.show()
 return theta1,theta2,theta,loss_list
 
def painter3d(theta1,theta2,loss):
 style.use('ggplot')
 fig = plt.figure()
 ax1 = fig.add_subplot(111, projection='3d')
 x,y,z = theta1,theta2,loss
 ax1.plot_wireframe(x,y,z, rstride=5, cstride=5)
 ax1.set_xlabel("theta1")
 ax1.set_ylabel("theta2")
 ax1.set_zlabel("loss")
 plt.show()
  
if __name__ == '__main__':
 samples, y = get_data()
 theta1,theta2,theta,loss_list = sgd(samples, y)
 print(theta) # 会很接近[5, 7]
 
 painter3d(theta1,theta2,loss_list)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。