欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python 中的列表解析和生成表达式

程序员文章站 2022-05-24 14:49:18
...
列表解析

在需要改变列表而不是需要新建某列表时,可以使用列表解析。列表解析表达式为:

[expr for iter_var in iterable] [expr for iter_var in iterable if cond_expr]
第一种语法:首先迭代iterable里所有内容,每一次迭代,都把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。
第二种语法:加入了判断语句,只有满足条件的内容才把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。

举例如下:
复制代码 代码如下:

>>> L= [(x+1,y+1) for x in range(3) for y in range(5)]
>>> L
[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)]
>>> N=[x+10 for x in range(10) if x>5]
>>> N
[16, 17, 18, 19]

生成器表达式

生成器表达式是在python2.4中引入的,当序列过长, 而每次只需要获取一个元素时,应当考虑使用生成器表达式而不是列表解析。生成器表达式的语法和列表解析一样,只不过生成器表达式是被()括起来的,而不是[],如下:
复制代码 代码如下:

(expr for iter_var in iterable)
(expr for iter_var in iterable if cond_expr)

例:
复制代码 代码如下:

>>> L= (i + 1 for i in range(10) if i % 2)
>>> L
at 0xb749a52c>
>>> L1=[]
>>> for i in L:
... L1.append(i)
...
>>> L1
[2, 4, 6, 8, 10]

生成器表达式并不真正创建数字列表, 而是返回一个生成器,这个生成器在每次计算出一个条目后,把这个条目“产生”(yield)出来。 生成器表达式使用了“惰性计算”(lazy evaluation,也有翻译为“延迟求值”,我以为这种按需调用call by need的方式翻译为惰性更好一些),只有在检索时才被赋值( evaluated),所以在列表比较长的情况下使用内存上更有效。A generator object in python is something like a lazy list. The elements are only evaluated as soon as you iterate over them.

一些说明:

1. 当需要只是执行一个循环的时候尽量使用循环而不是列表解析,这样更符合python提倡的直观性。
复制代码 代码如下:

for item in sequence:
process(item)

2. 当有内建的操作或者类型能够以更直接的方式实现的,不要使用列表解析。

例如复制一个列表时,使用:L1=list(L)即可,不必使用:
复制代码 代码如下:

L1=[x for x in L]

3. 如果需要对每个元素都调用并且返回结果时,应使用L1=map(f,L), 而不是 L1=[f(x) for x in L]python 中的列表解析和生成表达式

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn核实处理。

相关文章

相关视频


网友评论

文明上网理性发言,请遵守 新闻评论服务协议

我要评论
  • python 中的列表解析和生成表达式
  • 专题推荐

    作者信息
    python 中的列表解析和生成表达式

    认证0级讲师

    推荐视频教程
  • python 中的列表解析和生成表达式javascript初级视频教程
  • python 中的列表解析和生成表达式jquery 基础视频教程
  • 视频教程分类