欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

hadoop组件 面向列的开源数据库:hbase简介

程序员文章站 2022-05-23 08:21:16
简介 我们之前已经学习了hive,现在来学习下hbase。 HBase(Hadoop Database)是一个高可靠性、高性能、面向列、可伸缩、 实时读写的分布式数据库。 与hadoop...

简介

我们之前已经学习了hive,现在来学习下hbase。
HBase(Hadoop Database)是一个高可靠性、高性能、面向列、可伸缩、 实时读写的分布式数据库
与hadoop一样,Hbase可以依靠横向扩展,通过不断增加廉价的服务器,来增加计算和存储能力。

背景

该技术来源于Fay Chang所撰写的Google论文Bigtable(一个结构化数据的分布式存储系统)。
就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样
HBase在Hadoop之上提供了类似于Bigtable的能力。
HBase是Apache的Hadoop项目的子项目。

与关系型数据库的区别

HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
另一个不同的是HBase基于列的而不是基于行的模式。

HBase是介于Nosql(非关系型数据库)和RDBMS(关系型数据库)之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。
主要用来存储非结构化和半结构化的松散数据。

hadoop组件 面向列的开源数据库:hbase简介

特点

大:一个表可以有上亿行,上百万列
面向列:面向列(族)的存储和权限控制,列(族)独立检索。
稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。

数据模型

hadoop组件 面向列的开源数据库:hbase简介

如上图在hbase中是三行数据。

HBase以表的形式存储数据。表有行和列组成。列划分为若干个列族(row family),每个“列族”都可以有多个列成员(column,每个列族中可以存放几千~上千万个列);如 CF1:n1, CF1:a1,CF1:a2,CF1:a3,CF1:a4…

hadoop组件 面向列的开源数据库:hbase简介

Row Key

与nosql数据库们一样,row key是用来检索记录的主键,是决定一行数据的唯一标识。

访问hbase table中的行,只有三种方式:

1 通过单个row key访问

2 通过row key的range

3 全表扫描

RowKey是按照字典顺序排序的

存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)

注意:

字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。要保持整形的自然序,行键必须用0作左填充。

行的一次读写是原子操作 (不论一次读写多少列)。这个设计决策能够使用户很容易的理解程序在对同一个行进行并发更新操作时的行为。

Row key最多只能存储64k的字节数据

Row key行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在hbase内部,row key保存为字节数组。

列族(Column Family)和列(qualifier)

hbase表中的每个列,都归属与某个列族。列族是表的chema的一部分(而列不是),必须在使用表之前定义,如create ‘test’, ‘course’。

列名都以列族作为前缀。例如courses:history , courses:math 都属于 courses 这个列族。

新的列族成员(列)可以随后按需、动态加入,Family下面可以有多个Qualifier,所以可以简单的理解为,HBase中的列是二级列,

也就是说Family是第一级列,Qualifier是第二级列。两个是父子关系。

访问控制、磁盘和内存的使用统计、权限控制、存储以及调优、都是在列族层面进行的。

实际应用中,列族上的控制权限能 帮助我们管理不同类型的应用:我们允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、一些应用则只允许浏览数据(甚至可能因 为隐私的原因不能浏览所有数据)。

HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。

目前为止HBase的列族能能够很好处理最多不超过3个列族。

时间戳

HBase中通过row和columns确定的为一个存贮单元称为cell。

每个 cell都保存着同一份数据的多个版本。

版本通过时间戳来索引。

时间戳的类型是 64位整型。

时间戳可以由hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。

时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。

每个 cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。

为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。

一是保存数据的最后n个版本,二是保存最近一段时间内的版本(比如最近七天),用户可以针对每个列族进行设置。

Cell

由行和列的坐标{row key, column( = +

单元格的内容是未解析的字节数组(Byte[]),cell中的数据是没有类型的,全部是字节码形式存储。

单元格是有版本的(由时间戳来作为版本);

体系架构

hadoop组件 面向列的开源数据库:hbase简介

Client

包含访问HBase的接口并维护cache来加快对HBase的访问

Zookeeper

保证任何时候,集群中只有一个master

存贮所有Region的寻址入口。

实时监控Region server的上线和下线信息。并实时通知Master

存储HBase的schema和table元数据

Master

为Region server分配region

负责Region server的负载均衡

发现失效的Region server并重新分配其上的region

管理用户对table的增删改操作

RegionServer

Region server维护region,处理对这些region的IO请求

Region server负责切分在运行过程中变得过大的region 

client访问hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低。

hadoop组件 面向列的开源数据库:hbase简介

注意,每个HRegsionServer维护一个HLog文件

HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

Region

HBase自动把表水平划分成多个区域(region),每个region会保存一个表 里面某段连续的数据;每个表一开始只有一个region,随着数据不断插 入表,

region不断增大,当增大到一个阀值的时候,region就会等分会 两个新的region(裂变);

当table中的行不断增多,就会有越来越多的region。这样一张完整的表 被保存在多个Regionserver上。

Memstore 与 storefile

一个region由多个store组成,一个store对应一个CF(列族)

store包括位于内存中的memstore和位于磁盘的storefile写操作先写入 memstore,当memstore中的数据达到某个阈值,hregionserver会启动 flashcache进程写入storefile,每次写入形成单独的一个storefile

当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、 major compaction),在合并过程中会进行版本合并和删除工作 (majar),形成更大的storefile。

当一个region所有storefile的大小和超过一定阈值后,会把当前的region 分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡。

hadoop组件 面向列的开源数据库:hbase简介

客户端检索数据,先在memstore找,找不到再找storefile

HRegion是HBase中分布式存储和负载均衡的最小单元。

最小单元就表示不同的HRegion可以分布在不同的HRegion server上。但一个Hregion是不会拆分到多个server上的。

HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元。

HRegion由一个或者多个Store组成,每个store保存一个columns family。

每个Strore又由一个memStore和0至多个StoreFile组成。

如图:StoreFile 以HFile格式保存在HDFS上。
hadoop组件 面向列的开源数据库:hbase简介

hadoop组件 面向列的开源数据库:hbase简介

HLog

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。

每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

物理存储

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

1、HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2、HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

HFile分为六个部分:
Data Block 段–保存表中的数据,这部分可以被压缩
Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。
File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。
Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。
Meta Block Index段 (可选的)–Meta Block的索引。
hadoop组件 面向列的开源数据库:hbase简介

Trailer–这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先 读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个 block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。

HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。

目标Hfile的压缩支持两种方式:Gzip,Lzo。

在HFile中根据一个key搜索一个data的过程:

先内存中对HFile的root index进行二分查找。如果支持多级索引的话,则定位到的是leaf/intermediate index,如果是单级索引,则定位到的是data block

如果支持多级索引,则会从缓存/hdfs(分布式文件系统)中读取leaf/intermediate index chunk,在leaf/intermediate chunk根据key值进行二分查找(leaf/intermediate index chunk支持二分查找),找到对应的data block。

从缓存/hdfs中读取data block。

在data block中遍历查找key。

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的 Block Cache 机制。每个Data块的大小可以在创建一个Table的时候通过参数指定(默认64K),大号的Block有利于顺序Scan,小号Block利于随机查询。在DataBlock中存储的是一系列KeyValue,在KeyValue后面跟一个timestamp,如下图所示:
hadoop组件 面向列的开源数据库:hbase简介

HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。KV结构图如下:
hadoop组件 面向列的开源数据库:hbase简介

可以看出KeyValue格式分为四个部分:KeyLength、ValueLength、Key、Value。

其中KeyLength和ValueLength都是整型,表示长度。Key有固定的格式,KeyType有四种类型,分别是Put、Delete、 DeleteColumn和DeleteFamily。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HLog(WAL log)

hadoop组件 面向列的开源数据库:hbase简介
上图中示意了HLog文件的结构,其实HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。

HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

关键算法和流程

region定位

系统如何找到某个row key (或者某个 row key range)所在的region
bigtable 使用三层类似B+树的结构来保存region位置。
第一层是保存zookeeper里面的文件,它持有root region的位置。
第二层root region是.META.表的第一个region其中保存了.META.z表其它region的位置。通过root region,我们就可以访问.META.表的数据。
.META.是第三层,它是一个特殊的表,保存了hbase中所有数据表的region 位置信息。

说明:
1 root region永远不会被split,保证了最需要三次跳转,就能定位到任意region 。
2.META.表每行保存一个region的位置信息,row key 采用表名+表的最后一样编码而成。
3 为了加快访问,.META.表的全部region都保存在内存中。
假设,.META.表的一行在内存中大约占用1KB。并且每个region限制为128MB。
那么上面的三层结构可以保存的region数目为:
(128MB/1KB) * (128MB/1KB) = = 2(34)个region
4 client会将查询过的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region(其中三次用来发现缓存失效,另外三次用来获取位置信息)。

读写过程

上文提到,hbase使用MemStore和StoreFile存储对表的更新。

数据在更新时首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并 且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时,系统会在zookeeper中 记录一个redo point,表示这个时刻之前的变更已经持久化了。(minor compact)

当系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据。

前面提到过StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更 新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行split,等分为两个StoreFile。

由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的 StoreFile和MemStore,将他们的按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,合并的过程还是比较快。

1 client向region server提交写请求

2 region server找到目标region

3 region检查数据是否与schema一致

4 如果客户端没有指定版本,则获取当前系统时间作为数据版本

5 将更新写入WAL log

6 将更新写入Memstore

7 判断Memstore的是否需要flush为Store文件。

region分配

任何时刻,一个region只能分配给一个region server。master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配。当存在未分配的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。

region server上线

master使用zookeeper来跟踪region server状态。当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的文件,并获得该文件的独占锁。由于master订阅了server 目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。

region server下线

当region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁。而master不断轮询 server目录下文件的锁状态。如果master发现某个region server丢失了它自己的独占锁,(或者master连续几次和region server通信都无法成功),master就是尝试去获取代表这个region server的读写锁,一旦获取成功,就可以确定:

1 region server和zookeeper之间的网络断开了。

2 region server挂了。

的其中一种情况发生了,无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的文件,并将这台region server的region分配给其它还活着的同志。

如果网络短暂出现问题导致region server丢失了它的锁,那么region server重新连接到zookeeper之后,只要代表它的文件还在,它就会不断尝试获取这个文件上的锁,一旦获取到了,就可以继续提供服务。

master上线

master启动进行以下步骤:

1 从zookeeper上获取唯一一个代码master的锁,用来阻止其它master成为master。

2 扫描zookeeper上的server目录,获得当前可用的region server列表。

3 和2中的每个region server通信,获得当前已分配的region和region server的对应关系。

4 扫描.META.region的集合,计算得到当前还未分配的region,将他们放入待分配region列表。

master下线

由于master只维护表和region的元数据,而不参与表数据IO的过 程,master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表的schema,无法进行region的负载均衡,无法处理region 上下线,无法进行region的合并,唯一例外的是region的split可以正常进行,因为只有region server参与),表的数据读写还可以正常进行。因此master下线短时间内对整个hbase集群没有影响。从上线过程可以看到,master保存的 信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来),因此,一般hbase集群中总是有一个master在提供服务,还有一个以上 的’master’在等待时机抢占它的位置。

访问接口

Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据 HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用 Thrift Gateway,利用Thrift序列化技术,支持C++,PHPPython等多种语言,适合其他异构系统在线访问HBase表数据 REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制 Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计 Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

适用场景

1、存在高并发读写
2、表结构的列族经常需要调整
3、存储结构化或半结构化数据
4、高并发的key-value存储
5、key随机写入,有序存储
6、针对每个key保存一个固定大小的集合多版本
7、适合海量的,但同时也是简单的操作(例如:key-value)。

不适用场景

1、由于hbase只能提供行锁,它对分布式事务支持不好
2、对于查询操作中的join、group by 性能很差
3、查询如果不使用row-key查询,性能会很差,因为此时会进行全表扫描,建立二级索引或多级索引需要同时维护一张索引表
4、高并发的随机读支持有限

总结

Hive VS HBase

Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Hadoop对实时操作的缺陷的项目 。

想象你在操作RMDB数据库,如果是大数据量统计分析,全表扫描,就用Hive,如果是索引访问,少量实时精准查询,就用HBase。

Hive query就是MapReduce jobs可以从5分钟到数小时不止,HBase是非常高效的,肯定比Hive高效的多