深度优先搜索是一种枚举所有完整路径以遍历所有情况的搜索方法。(不撞南墙不回头)
DFS一般用递归来实现,其伪代码思路过程一般如下:
void DFS(必要的参数){
if (符和遍历到一条完整路径的尾部){
更新某个全局变量的值
}
if (跳出循环的临界条件){
return;
}
对所有可能出现的情况进行递归
}
常见题型1:
代码实现:
1 #include <stdio.h>
2 const int maxn = 30;
3 int n, V, maxVal = 0; // 物品减数, 背包容量,最大价值maxValue
4 int w[30];
5 int c[30];
6 int ans = 0; // 最大价值
7
8 // dfs, index是物品编号,nowW是当前所收纳的物品容量,nowC是当前所收纳的物品的总价值
9 void dfs(int index, int nowW, int nowC){
10 if (index == n){
11 return;
12 }
13 dfs(index + 1, nowW, nowC); // 不选第index件商品
14 if (nowW + w[index] <= V){ // 选第index件商品,但是先判断容量是否超限
15 if (nowC + c[index] > ans){
16 ans = nowC + c[index]; // 更新最大价值
17 }
18 dfs(index + 1, nowW + w[index], nowC + c[index]);
19 }
20 }
21
22 int main()
23 {
24 scanf("%d %d", &n, &V);
25 for (int i = 0; i < n; i++){
26 scanf("%d", &w[i]); // 每件物品的重量
27 }
28 for (int i = 0; i < n; i++){
29 scanf("%d", &c[i]); // 每件物品的价值
30 }
31
32 dfs(0, 0, 0);
33 printf("%d\n", ans);
34
35 return 0;
36 }
常见题型二:
枚举从N 个整数找那个选择K个数(有时这个数可能可以重复)的所有方案(有时要打印这个方案的序列)
代码实现:
1 #include <stdio.h>
2 #include <vector>
3 using namespace std;
4
5 const int maxn = 30;
6 // 从包含n个数的序列A中选k个数使得和为x, 最大平方和为maxSumSqu;
7 int n, k, sum, maxSumSqu = -1, A[maxn];
8 vector<int> temp, ans; // temp存放临时方案,ans存放平方和最大的方案
9
10 void DFS(int index, int nowK, int nowSum, int nowSumSqu){
11 if (nowK == k && nowSum == sum){
12 if (nowSumSqu > maxSumSqu){
13 maxSumSqu = nowSumSqu;
14 ans = temp;
15 }
16 return;
17 }
18 // 如果已经处理完n个数,或者选择了超过k个数,或者和超过x
19 if (index == n && nowK > k && nowSum > sum){
20 return;
21 }
22
23 // 选这个数
24 temp.push_back(A[index]);
25 DFS(index + 1, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);
26
27 // 不选这个数
28 // 先把刚加到temp中的数据去掉
29 temp.pop_back();
30 DFS(index + 1, nowK, nowSum, nowSumSqu);
31 }
如果选出的k个数可以重复,那么只需将上面“选这个数的 index + 1 改成 index 即可”
将
DFS(index + 1, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);
改成
DFS(index, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);
DFS题型实战:
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
代码实现:
1 #include <stdio.h>
2 #include <vector>
3 #include <algorithm>
4 #include <math.h>
5 using namespace std;
6
7 // 从1 - 20中选出k个数,数可重复,使得这些数的p次方的和刚好等于n, 求这些序列中和最大的那个序列
8
9 int A[21];
10 int flag = 1;
11 int n, k, p, maxSum = -1;
12 vector<int> ans, temp, fac; // ans 存放最终序列, temp存放临时序列
13
14 // 快速幂
15 int power(int i){
16 /*if (p == 1 )
17 return i;
18 if ((p & 1) != 0)
19 return i * power(i, p - 1);
20 else
21 {
22 int temp = power(i, p / 2);
23 return temp * temp;
24 }*/
25
26 int ans = 1;
27 for (int j = 0; j < p; j++){
28 ans *= i;
29 }
30 return ans;
31 }
32
33 // 求出所有不大于n的p次幂
34 void init(){
35 int i = 0, temp = 0;
36 while (temp <= n){
37 fac.push_back(temp);
38 temp = power(++i);
39 }
40 }
41
42 // DFS
43 void DFS(int index, int nowK, int sum, int squSum){
44 // 临界条件
45 if (squSum == n && nowK == k){
46 if (sum > maxSum){
47 maxSum = sum;
48 ans = temp;
49 }
50
51 return;
52 }
53
54 if (sum > n || nowK > k){
55 return;
56 }
57
58 if (index >= 1){
59 // 遍历所有可能的情况
60 // 选当前数
61 temp.push_back(index);
62 DFS(index, nowK + 1, sum + index, squSum + fac[index]);
63
64 // 不选当前数
65 temp.pop_back();
66 DFS(index - 1, nowK, sum, squSum);
67
68
69 }
70 }
71
72 int main()
73 {
74 // 读取输入
75 // freopen("in.txt", "r", stdin);
76 scanf("%d %d %d", &n, &k, &p);
77
78 // 初始化fac数组
79 init();
80
81 // DFS寻找最合适的序列
82 DFS(fac.size() - 1, 0, 0, 0);
83
84 // 输出
85 // 如果ans的size大于1则说明有结果
86 if (maxSum != -1){
87 // 排序
88 printf("%d = %d^%d", n, ans[0], p);
89 for (int i = 1; i < ans.size(); i++){
90 printf(" + %d^%d", ans[i], p);
91 }
92 }else
93 printf("Impossible");
94
95 // fclose(stdin);
96 return 0;
97 }
这个实战题主要就是要先把 所有不超过 N 的 i ^p都算出来,要不然会超时