欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度优先搜索 DFS(Depath First Search, DFS)

程序员文章站 2022-05-22 21:57:10
...

深度优先搜索是一种枚举所有完整路径以遍历所有情况的搜索方法。(不撞南墙不回头)

DFS一般用递归来实现,其伪代码思路过程一般如下:

void DFS(必要的参数){
    if (符和遍历到一条完整路径的尾部){
        更新某个全局变量的值
    }
    if (跳出循环的临界条件){
        return;
    }
    对所有可能出现的情况进行递归
}

常见题型1:

深度优先搜索 DFS(Depath First Search, DFS)

 代码实现:

 1 #include <stdio.h>
 2 const int maxn = 30;
 3 int n, V, maxVal = 0;        // 物品减数, 背包容量,最大价值maxValue
 4 int w[30];
 5 int c[30];
 6 int ans = 0;        // 最大价值
 7 
 8 // dfs, index是物品编号,nowW是当前所收纳的物品容量,nowC是当前所收纳的物品的总价值
 9 void dfs(int index, int nowW, int nowC){
10     if (index == n){
11         return;
12     }
13     dfs(index + 1, nowW, nowC);        // 不选第index件商品
14     if (nowW + w[index] <= V){        // 选第index件商品,但是先判断容量是否超限
15         if (nowC + c[index] > ans){
16             ans = nowC + c[index];        // 更新最大价值
17         }
18         dfs(index + 1, nowW + w[index], nowC + c[index]);
19     }
20 }
21 
22 int main()
23 {
24     scanf("%d %d", &n, &V);
25     for (int i = 0; i < n; i++){
26         scanf("%d", &w[i]);            // 每件物品的重量
27     }
28     for (int i = 0; i < n; i++){
29         scanf("%d", &c[i]);            // 每件物品的价值
30     }
31 
32     dfs(0, 0, 0);
33     printf("%d\n", ans);
34 
35     return 0;
36 }

常见题型二:

枚举从N 个整数找那个选择K个数(有时这个数可能可以重复)的所有方案(有时要打印这个方案的序列)

深度优先搜索 DFS(Depath First Search, DFS)

 代码实现:

 1 #include <stdio.h>
 2 #include <vector>
 3 using namespace std;
 4 
 5 const int maxn = 30;
 6 // 从包含n个数的序列A中选k个数使得和为x, 最大平方和为maxSumSqu;
 7 int n, k, sum, maxSumSqu = -1, A[maxn];
 8 vector<int> temp, ans;        // temp存放临时方案,ans存放平方和最大的方案
 9 
10 void DFS(int index, int nowK, int nowSum, int nowSumSqu){
11     if (nowK == k && nowSum == sum){
12         if (nowSumSqu > maxSumSqu){
13             maxSumSqu = nowSumSqu;
14             ans = temp;
15         }
16         return;
17     }
18     // 如果已经处理完n个数,或者选择了超过k个数,或者和超过x
19     if (index == n && nowK > k && nowSum > sum){
20         return;
21     }
22 
23     // 选这个数
24     temp.push_back(A[index]);
25     DFS(index + 1, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);
26     
27     // 不选这个数
28     // 先把刚加到temp中的数据去掉
29     temp.pop_back();
30     DFS(index + 1, nowK, nowSum, nowSumSqu);
31 }

如果选出的k个数可以重复,那么只需将上面“选这个数的 index + 1 改成 index 即可”

DFS(index + 1, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);

改成

DFS(index, nowK + 1, nowSum + A[index], nowSumSqu + A[index] * A[index]);

DFS题型实战:

           1103 Integer Factorization (30分)

The KP factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the KP factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (400), K (N) and P (1<P7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122​​+42​​+22​​+22​​+12​​, or 112​​+62​​+22​​+22​​+22​​, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1​​,a2​​,,aK​​ } is said to be larger than { b1​​,b​2​​,⋯,b​K​​ } if there exists 1≤L≤K such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

代码实现:
 1 #include <stdio.h>
 2 #include <vector>
 3 #include <algorithm>
 4 #include <math.h>
 5 using namespace std;
 6 
 7 // 从1 - 20中选出k个数,数可重复,使得这些数的p次方的和刚好等于n, 求这些序列中和最大的那个序列
 8 
 9 int A[21];
10 int flag = 1;
11 int n, k, p, maxSum = -1;
12 vector<int> ans, temp, fac;        // ans 存放最终序列, temp存放临时序列
13 
14 // 快速幂
15 int power(int i){
16     /*if (p == 1 )
17         return i;
18     if ((p & 1) != 0)
19         return i * power(i, p - 1);
20     else
21     {
22         int temp = power(i, p / 2);
23         return temp * temp;
24     }*/
25 
26     int ans = 1;
27     for (int j = 0; j < p; j++){
28         ans *= i;
29     }
30     return ans;
31 }
32 
33 // 求出所有不大于n的p次幂
34 void init(){
35     int i = 0, temp = 0;
36     while (temp <= n){
37         fac.push_back(temp);
38         temp = power(++i);
39     }
40 }
41 
42 // DFS
43 void DFS(int index, int nowK, int sum, int squSum){
44     // 临界条件
45     if (squSum == n && nowK == k){
46         if (sum > maxSum){
47             maxSum = sum;
48             ans = temp;
49         }
50         
51         return;
52     }
53 
54     if (sum > n || nowK > k){
55         return;
56     }
57 
58     if (index >= 1){
59         // 遍历所有可能的情况
60         // 选当前数
61         temp.push_back(index);
62         DFS(index, nowK + 1, sum + index, squSum + fac[index]);
63 
64         // 不选当前数
65         temp.pop_back();
66         DFS(index - 1, nowK, sum, squSum);
67 
68         
69     }
70 }
71 
72 int main()
73 {
74     // 读取输入
75     // freopen("in.txt", "r", stdin);
76     scanf("%d %d %d", &n, &k, &p);
77 
78     // 初始化fac数组
79     init();
80 
81     // DFS寻找最合适的序列
82     DFS(fac.size() - 1, 0, 0, 0);
83     
84     // 输出
85     // 如果ans的size大于1则说明有结果
86     if (maxSum != -1){
87         // 排序
88         printf("%d = %d^%d", n, ans[0], p);
89         for (int i = 1; i < ans.size(); i++){
90             printf(" + %d^%d", ans[i], p);
91         }
92     }else
93         printf("Impossible");
94 
95     // fclose(stdin);
96     return 0;
97 }

这个实战题主要就是要先把 所有不超过 N 的 i ^p都算出来,要不然会超时