1321. Restaurant Growth----利用窗口函数连续几天累加求和和均值(BETWEEN 6 PRECEDING AND CURRENT ROW)
程序员文章站
2022-05-22 13:34:57
...
Table: Customer
+---------------+---------+ | Column Name | Type | +---------------+---------+ | customer_id | int | | name | varchar | | visited_on | date | | amount | int | +---------------+---------+ (customer_id, visited_on) is the primary key for this table. This table contains data about customer transactions in a restaurant. visited_on is the date on which the customer with ID (customer_id) have visited the restaurant. amount is the total paid by a customer.
You are the restaurant owner and you want to analyze a possible expansion (there will be at least one customer every day).
Write an SQL query to compute moving average of how much customer paid in a 7 days window (current day + 6 days before) .
The query result format is in the following example:
Return result table ordered by visited_on.
average_amount
should be rounded to 2 decimal places, all dates are in the format ('YYYY-MM-DD').
Customer table: +-------------+--------------+--------------+-------------+ | customer_id | name | visited_on | amount | +-------------+--------------+--------------+-------------+ | 1 | Jhon | 2019-01-01 | 100 | | 2 | Daniel | 2019-01-02 | 110 | | 3 | Jade | 2019-01-03 | 120 | | 4 | Khaled | 2019-01-04 | 130 | | 5 | Winston | 2019-01-05 | 110 | | 6 | Elvis | 2019-01-06 | 140 | | 7 | Anna | 2019-01-07 | 150 | | 8 | Maria | 2019-01-08 | 80 | | 9 | Jaze | 2019-01-09 | 110 | | 1 | Jhon | 2019-01-10 | 130 | | 3 | Jade | 2019-01-10 | 150 | +-------------+--------------+--------------+-------------+ Result table: +--------------+--------------+----------------+ | visited_on | amount | average_amount | +--------------+--------------+----------------+ | 2019-01-07 | 860 | 122.86 | | 2019-01-08 | 840 | 120 | | 2019-01-09 | 840 | 120 | | 2019-01-10 | 1000 | 142.86 | +--------------+--------------+----------------+ 1st moving average from 2019-01-01 to 2019-01-07 has an average_amount of (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86 2nd moving average from 2019-01-02 to 2019-01-08 has an average_amount of (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120 3rd moving average from 2019-01-03 to 2019-01-09 has an average_amount of (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120 4th moving average from 2019-01-04 to 2019-01-10 has an average_amount of (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
解题方法:
SELECT visited_on, amount, ROUND(average_amount, 2) AS 'average_amount'
FROM
(SELECT visited_on,
SUM(amount) OVER (ORDER BY visited_on ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS 'amount',
AVG(amount) OVER (ORDER BY visited_on ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS 'average_amount',
DENSE_RANK() OVER (ORDER BY visited_on) AS 'rnk'
FROM (SELECT visited_on, SUM(amount) AS 'amount' FROM Customer GROUP BY visited_on) M) T
WHERE rnk >= 7;
上一篇: 数组下标越界问题
下一篇: NOIp2017奶酪————并查集