欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

OpenCV视频入门操作,打开指定视频以及本地摄像头(C++)库函数图像识别追踪——VS2017-OpenCV4.0.1

程序员文章站 2022-05-22 13:07:20
...

OpenCV的安装与实现VS环境设

https://blog.csdn.net/cfl997/article/details/92829765

视频:

VideoCapture capture(0);

参数为0;默认打开本地摄像头;

换成地址即可。

用一个while函数取读取每一帧,再显示。也就是不断地显示很多张图片。

#include<opencv2/opencv.hpp>
using namespace cv;

int main() {
	VideoCapture capture(0);
	Mat edges;
	while (1) {
		Mat frame;
		capture >> frame;
		imshow("读取视频", frame);
		if (waitKey(30) >= 0)break;
	}
	return 0;
}

对于视频的处理。

既然都是每一帧图像,自然就是对图像的处理。

我们测试一个边缘化:

#include<opencv2/opencv.hpp>
using namespace cv;

int main() {
	VideoCapture capture(0);
	Mat edges;
	while (1) {
		Mat frame;
		capture >> frame;
		cvtColor(frame, edges, COLOR_BGR2GRAY);
		blur(edges, edges, Size(7, 7));
		Canny(edges, edges, 3,9,3);
		imshow("读取视频", edges);
		if (waitKey(30) >= 0)break;
	}
	return 0;
}

效果图:

OpenCV视频入门操作,打开指定视频以及本地摄像头(C++)库函数图像识别追踪——VS2017-OpenCV4.0.1

边缘处理可以自然灰度处理,模糊等操作也是可以的。

 

这里库函数里有个写好的操作可以追踪选择的图像

在摄像头的视频中选取要识别的颜色范围。便可以跟踪图像:

OpenCV视频入门操作,打开指定视频以及本地摄像头(C++)库函数图像识别追踪——VS2017-OpenCV4.0.1

OpenCV视频入门操作,打开指定视频以及本地摄像头(C++)库函数图像识别追踪——VS2017-OpenCV4.0.1

代码如下:

#include <opencv2/core/utility.hpp>
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/highgui.hpp"

#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;

Mat image;

bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;

// User draws box around object to track. This triggers CAMShift to start tracking
static void onMouse( int event, int x, int y, int, void* )
{
    if( selectObject )
    {
        selection.x = MIN(x, origin.x);
        selection.y = MIN(y, origin.y);
        selection.width = std::abs(x - origin.x);
        selection.height = std::abs(y - origin.y);

        selection &= Rect(0, 0, image.cols, image.rows);
    }

    switch( event )
    {
    case EVENT_LBUTTONDOWN:
        origin = Point(x,y);
        selection = Rect(x,y,0,0);
        selectObject = true;
        break;
    case EVENT_LBUTTONUP:
        selectObject = false;
        if( selection.width > 0 && selection.height > 0 )
            trackObject = -1;   // Set up CAMShift properties in main() loop
        break;
    }
}

string hot_keys =
    "\n\nHot keys: \n"
    "\tESC - quit the program\n"
    "\tc - stop the tracking\n"
    "\tb - switch to/from backprojection view\n"
    "\th - show/hide object histogram\n"
    "\tp - pause video\n"
    "To initialize tracking, select the object with mouse\n";

static void help()
{
    cout << "\nThis is a demo that shows mean-shift based tracking\n"
            "You select a color objects such as your face and it tracks it.\n"
            "This reads from video camera (0 by default, or the camera number the user enters\n"
            "Usage: \n"
            "   ./camshiftdemo [camera number]\n";
    cout << hot_keys;
}

const char* keys =
{
    "{help h | | show help message}{@camera_number| 0 | camera number}"
};

int main( int argc, const char** argv )
{
    VideoCapture cap;
    Rect trackWindow;
    int hsize = 16;
    float hranges[] = {0,180};
    const float* phranges = hranges;
    CommandLineParser parser(argc, argv, keys);
    if (parser.has("help"))
    {
        help();
        return 0;
    }
    int camNum = parser.get<int>(0);
    cap.open(camNum);

    if( !cap.isOpened() )
    {
        help();
        cout << "***Could not initialize capturing...***\n";
        cout << "Current parameter's value: \n";
        parser.printMessage();
        return -1;
    }
    cout << hot_keys;
    namedWindow( "Histogram", 0 );
    namedWindow( "CamShift Demo", 0 );
    setMouseCallback( "CamShift Demo", onMouse, 0 );
    createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
    createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
    createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );

    Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
    bool paused = false;

    for(;;)
    {
        if( !paused )
        {
            cap >> frame;
            if( frame.empty() )
                break;
        }

        frame.copyTo(image);

        if( !paused )
        {
            cvtColor(image, hsv, COLOR_BGR2HSV);

            if( trackObject )
            {
                int _vmin = vmin, _vmax = vmax;

                inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
                        Scalar(180, 256, MAX(_vmin, _vmax)), mask);
                int ch[] = {0, 0};
                hue.create(hsv.size(), hsv.depth());
                mixChannels(&hsv, 1, &hue, 1, ch, 1);

                if( trackObject < 0 )
                {
                    // Object has been selected by user, set up CAMShift search properties once
                    Mat roi(hue, selection), maskroi(mask, selection);
                    calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
                    normalize(hist, hist, 0, 255, NORM_MINMAX);

                    trackWindow = selection;
                    trackObject = 1; // Don't set up again, unless user selects new ROI

                    histimg = Scalar::all(0);
                    int binW = histimg.cols / hsize;
                    Mat buf(1, hsize, CV_8UC3);
                    for( int i = 0; i < hsize; i++ )
                        buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);
                    cvtColor(buf, buf, COLOR_HSV2BGR);

                    for( int i = 0; i < hsize; i++ )
                    {
                        int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);
                        rectangle( histimg, Point(i*binW,histimg.rows),
                                   Point((i+1)*binW,histimg.rows - val),
                                   Scalar(buf.at<Vec3b>(i)), -1, 8 );
                    }
                }

                // Perform CAMShift
                calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
                backproj &= mask;
                RotatedRect trackBox = CamShift(backproj, trackWindow,
                                    TermCriteria( TermCriteria::EPS | TermCriteria::COUNT, 10, 1 ));
                if( trackWindow.area() <= 1 )
                {
                    int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
                    trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
                                       trackWindow.x + r, trackWindow.y + r) &
                                  Rect(0, 0, cols, rows);
                }

                if( backprojMode )
                    cvtColor( backproj, image, COLOR_GRAY2BGR );
                ellipse( image, trackBox, Scalar(0,0,255), 3, LINE_AA );
            }
        }
        else if( trackObject < 0 )
            paused = false;

        if( selectObject && selection.width > 0 && selection.height > 0 )
        {
            Mat roi(image, selection);
            bitwise_not(roi, roi);
        }

        imshow( "CamShift Demo", image );
        imshow( "Histogram", histimg );

        char c = (char)waitKey(10);
        if( c == 27 )
            break;
        switch(c)
        {
        case 'b':
            backprojMode = !backprojMode;
            break;
        case 'c':
            trackObject = 0;
            histimg = Scalar::all(0);
            break;
        case 'h':
            showHist = !showHist;
            if( !showHist )
                destroyWindow( "Histogram" );
            else
                namedWindow( "Histogram", 1 );
            break;
        case 'p':
            paused = !paused;
            break;
        default:
            ;
        }
    }

    return 0;
}