欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

程序员文章站 2022-05-22 09:58:38
...

传送门
求仙人掌的直径。
感觉不是很难。


分点在环上面和不在环上分类讨论。
不在环上直接树形dpdp
然后如果在环上讨论一波。
首先对环的祖先有贡献的只有环上dfsdfs序最小的点。
对答案有贡献的则是环上的任意两个点。
对于环上任意两点(i,j)(i,j)
Ans=max(Ans,f[i]+f[j]+dist(i,j))Ans=max(Ans,f[i]+f[j]+dist(i,j))其中distdist指的是较短的距离。
假设i>ji>j那么f[i]+f[j]+ijf[i]+f[j]+i-j这个式子可以用单调队列优化。
然后均摊下来每次复杂度是当前环长度。
因此总复杂度O(n)O(n)
代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
    int ans=0;
    char ch=getchar();
    while(!isdigit(ch))ch=getchar();
    while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
    return ans;
}
const int N=2e5+5,M=1e6+5;
int n,m,first[N],cnt=0,tot=0,fa[N],dep[N],f[N],dfn[N],low[N],q[N<<1],a[N<<1],hd,tl,ans=0;
struct edge{int v,next;}e[M<<1];
inline void add(int u,int v){e[++cnt].v=v,e[cnt].next=first[u],first[u]=cnt;}
inline void update(int st,int ed){
    int siz=dep[ed]-dep[st]+1,lim=siz>>1,all=siz;
    for(int pos=ed,i=siz;i;--i,pos=fa[pos])a[i]=pos;
    memcpy(a+siz+1,a+1,sizeof(int)*lim),siz+=lim,q[hd=tl=1]=1;
    for(int i=2;i<=siz;++i){
        while(hd<=tl&&q[hd]<i-lim)++hd;
        ans=max(ans,f[a[i]]+f[a[q[hd]]]+i-q[hd]);
        while(hd<=tl&&f[a[q[tl]]]-q[tl]<=f[a[i]]-i)--tl;
        q[++tl]=i;
    }
    for(int i=2;i<=all;++i)f[st]=max(f[st],f[a[i]]+min(i-1,all-i+1));
}
inline void tarjan(int p){
    dfn[p]=low[p]=++tot;
    for(int i=first[p];i;i=e[i].next){
        int v=e[i].v;
        if(v==fa[p])continue;
        if(!dfn[v])fa[v]=p,dep[v]=dep[p]+1,tarjan(v),low[p]=min(low[p],low[v]);
        else low[p]=min(low[p],dfn[v]);
        if(dfn[p]<low[v])ans=max(ans,f[p]+f[v]+1),f[p]=max(f[p],f[v]+1);
    }
    for(int i=first[p];i;i=e[i].next){
        int v=e[i].v;
        if(fa[v]!=p&&dfn[p]<dfn[v])update(p,v);
    }
}
int main(){
    n=read(),m=read();
    while(m--){
        int k=read()-1,x=read(),y;
        while(k--)y=read(),add(x,y),add(y,x),x=y;
    }
    tarjan(1),cout<<ans;
    return 0;
}
相关标签: 数据结构 dp