Structured Streaming
Structured Streaming
基于SQL On Streaming
有状态
窗口基于eventTime
什么是Structured Streaming
泛指使用SQL操作Spark的流处理。Structured Streaming是一个scalable 和 fault-tolerant 流处理引擎,该引擎是构建Spark SQL之上。可以使得用户以静态批处理的方式去计算流处理。Structured Streaming底层毁掉用SparkSQL 引擎对流数据做增量和持续的更新计算并且输出最终结果。用户可以使用 Dataset/DataFrame API
完成流处理中的常见问题:aggregations-聚合统计、event-time window-事件窗口、stream-to-batch/stream-to-stream join连接等功能。Structured Streaming可以通过 checkpointing (检查点)和 Write-Ahead Logs(写前日志)机制实现end-to-end(端到端)、exactly-once(进准一次)语义容错机制。总之Structured Streaming提供了 快速、可扩展、容错、端到端的精准一次的流处理,无需用户过多的干预。
Structured Streaming底层计算引擎默认采取的是micro-batch
处理引擎(DStream一致的),除此之外Spark还提供了其它的处理模型可供选择:micro-batch-100ms
、Fixed interval micro-batches
、One-time micro-batch
、Continuous Processing-1ms(实验)
快速入门
- pom
<properties>
<spark.version>2.4.3</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
- Driver 程序
//1.创建sparksession
val spark = SparkSession
.builder
.appName("StructuredNetworkWordCount")
.master("local[5]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//3.执行SQL操作 API - 细化 窗口等
val wordCounts = lines.as[String].flatMap(_.split(" "))
.groupBy("value").count()
//3.执行SQL操作 API
/*lines.as[String].flatMap(_.split(" "))
.map((_,1))
.toDF("word","num")
.createOrReplaceTempView("t_words")
val wordCounts = spark.sql("select word,sum(num) from t_words group by word")
*/
//4.构建StreamQuery 将结果写出去 - 细化
val query = wordCounts.writeStream
.outputMode("complete") //表示全量输出,等价于 updateStateByKey
//.outputMode(OutputMode.Update()) //表示增量输出
.format("console")
.start()
//5.关闭流
query.awaitTermination()
常规概念
结构化流处理中的关键思想是将实时数据流视为被连续追加的表。将输入数据流视为“Input Table”。流上到达的每个数据项都像是将新行附加到Input Table中。
对Input Table的查询将生成“Result Table”。每个触发间隔(例如,每1秒钟),新行将附加到Input Table中,最终更新Result Table。无论何时更新Result Table,我们都希望将更改后的结果行写入外部接收器(sink)。
“输出”定义为写到外部存储器的内容。输出支持一下模式的输出:
- Complete Mode(状态) - 整个更新的结果表将被写入外部存储器。由存储连接器决定如何处理整个表的写入。
- Update Mode(状态) - 自上次触发以来,仅结果表中已更新的行将被写入外部存储(Spark 2.1.1),如果没有聚合该策略等价于Append Mode
- Append Mode(无状态) - 自上次触发以来,仅追加到结果表中的新行将被写入外部存储。这仅适用于结果表中现有行预计不会更改的查询。(Append也可以用在含有聚合的查询中,但是仅仅限制在窗口计算-后续讨论)
注意:
- Spark 并不会存储 Input Table 的数据,一旦处理完数据之后,就将接收的数据丢弃。Spark仅仅维护的是计算的中间结果(状态)
2)Structured Stream好处在于用户无需维护 计算状态(相比较于Storm流处理),Spark就可以实现end-to-end(端到端)、exactly-once(进准一次)语义容错机制。
输入和输出
输入
√Kafka source
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
//1.创建sparksession
val spark = SparkSession
.builder
.appName("StructuredNetworkWordCount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val df = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "CentOS:9092")
.option("subscribe", "topic01")
.load()
//3.执行SQL操作 API
import org.apache.spark.sql.functions._
val wordCounts = df.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "partition", "offset", "CAST(timestamp AS LONG)")
.flatMap(row => row.getAs[String]("value").split("\\s+"))
.map((_, 1))
.toDF("word", "num")
.groupBy($"word")
.agg(sum($"num"))
//3.执行SQL操作 API SQL版
/*val wordPair = df.selectExpr("CAST(key AS STRING)","CAST(value AS STRING)","partition","offset","CAST(timestamp AS LONG)")
.flatMap(row=>row.getAs[String]("value")split("\\s+"))
.map((_,1))
.toDF("word","num").createOrReplaceTempView("t_words")*/
val wordCounts = spark.sql("select word,sum(num) from t_words group by word")
//4.构建StreamQuery 将结果写出去
val query = wordCounts.writeStream
.outputMode(OutputMode.Update())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
FileSource(了解)
//1.创建sparksession
val spark = SparkSession
.builder
.appName("StructuredNetworkWordCount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val schema = new StructType()
.add("id",IntegerType)
.add("name",StringType)
.add("age",IntegerType)
.add("dept",IntegerType)
val df = spark.readStream
.schema(schema)
.format("json")
.load("file:///D:/demo/json")
//3 。SQL操作
// 略
//4.构建StreamQuery 将结果写出去
val query = df.writeStream
.outputMode(OutputMode.Update())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
输出
File sink(了解)
val spark = SparkSession
.builder
.appName("filesink")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
val wordCounts=lines.as[String].flatMap(_.split("\\s+"))
.map((_,1))
.toDF("word","num")
val query = wordCounts.writeStream
.outputMode(OutputMode.Append())
.option("path", "file:///D:/write/json")
.option("checkpointLocation", "file:///D:/checkpoints") //需要指定检查点
.format("json")
.start()
query.awaitTermination()
1、仅仅只支持Append Mode,所以一般用作数据的清洗,不能做为数据分析(聚合)输出。
2、需要指定检查点
√Kafka Sink
#创建
bin/kafka-topics.sh --create --topic topic04 --partitions 1 --replication-factor 1 --bootstrap-server CentOS:9092
#订阅
bin/kafka-console-consumer.sh --topic topic04 --bootstrap-server CentOS:9092 --from-beginning
val spark = SparkSession
.builder
.appName("filesink")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//import org.apache.spark.sql.functions._
//001 zhangsan iphonex 15000
val userCost=lines.as[String].map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1),ts(3).toDouble))
.toDF("id","name","cost")
.groupBy("id","name")
.sum("cost")
.as[(String,String,Double)]
.map(t=>(t._1,t._2+"\t"+t._3))
.toDF("key","value") //输出字段中必须有value string类型
val query = userCost.writeStream
.outputMode(OutputMode.Update())
.format("kafka")
.option("topic","topic02")
.option("kafka.bootstrap.servers","CentOS:9092")
.option("checkpointLocation","file:///D:/checkpoints01")//设置程序的检查点
.start()
//5.关闭流
query.awaitTermination()
支持 Append, Update, Complete输出模式
√Foreach sink
使用foreach和foreachBatch操作,您可以在流查询的输出上应用任意操作并编写逻辑。它们的用例略有不同-尽管foreach允许在每行上使用自定义写逻辑,而foreachBatch允许在每个微批处理的输出上进行任意操作和自定义逻辑。
ForeachBatch
foreachBatch(…)允许您指定在流查询的每个微批处理的输出数据上执行的函数。从Spark 2.4开始,Scala,Java和Python支持此功能。它具有两个参数:具有微批处理的输出数据的DataFrame或Dataset和微批处理的唯一ID。
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//001 zhangsan iphonex 15000
val userCost=lines.as[String].map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1),ts(3).toDouble))
.toDF("id","name","cost")
.groupBy("id","name")
.sum("cost")
.as[(String,String,Double)]
.map(t=>(t._1,t._2+"\t"+t._3))
.toDF("key","value") //输出字段中必须有value string类型
userCost.printSchema()
val query = userCost.writeStream
.outputMode(OutputMode.Update())
.foreachBatch((ds:Dataset[Row],bacthId)=>{
ds.show()
})
.start()
//5.关闭流
query.awaitTermination()
使用foreachBatch,可以执行以下操作。
- 使用现有的批处理当中的writer或者是Sink将数据写出到外围系统
- 可以讲数据集合写到多个地方
streamingDF.writeStream.foreachBatch { (batchDF: DataFrame, batchId: Long) =>
batchDF.persist() //缓存
batchDF.write.format(...).save(...) // location 1
batchDF.write.format(...).save(...) // location 2
batchDF.unpersist()//释放缓存
}
- 可以拿到dataset或者Dataframe执行额外的SQL操作。
Foreach
如果不使用foreachBatch,则可以使用foreach表达自定义writer将数据写到外围系统。具体来说,您可以通过自定Writer将数据写到外围系统:open,process和close。从Spark 2.4开始,foreach在Scala,Java和Python中可用。
val spark = SparkSession
.builder
.appName("filesink")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
import org.apache.spark.sql.functions._
//001 zhangsan iphonex 15000
val userCost=lines.as[String].map(_.split("\\s+"))
.map(ts=>(ts(0),ts(1),ts(3).toDouble))
.toDF("id","name","cost")
.groupBy("id","name")
.agg(sum("cost") as "cost")
val query = userCost.writeStream
.outputMode(OutputMode.Update())
.foreach(new ForeachWriter[Row] {
override def open(partitionId: Long, epochId: Long): Boolean = {//开启事务
// println(s"open:${partitionId},${epochId}")
return true //返回true,系统调用 process ,然后调用 close
}
override def process(value: Row): Unit = {
val id=value.getAs[String]("id")
val name=value.getAs[String]("name")
val cost=value.getAs[Double]("cost")
println(s"${id},${name},${cost}") //提交事务
}
override def close(errorOrNull: Throwable): Unit = {
//println("close:"+errorOrNull) //errorOrNull!=nul 回滚事务
}
})
.start()
//5.关闭流
query.awaitTermination()
窗口计算(前闭后开时间区间)
快速入门
滑动事件时间窗口上的聚合对于结构化流而言非常简单,并且与分组聚合非常相似
。时间是嵌入在数据当中
/*
所有窗口的数据都存在内存中,迟到的数据都会在对应的窗口再计算
hello 1570776560000
*/
//1.创建sparksession
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//3.执行SQL操作 API
// a 时间戳Long
import org.apache.spark.sql.functions._
val wordCounts = lines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), new Timestamp(ts(1).toLong), 1))
.toDF("word", "timestamp", "num")
.groupBy(
window($"timestamp", "4 seconds", "2 seconds"),
$"word")
.agg(sum("num") as "sum")
.map(row=> {
val start = row.getAs[Row]("window").getAs[Timestamp]("start")
val end = row.getAs[Row]("window").getAs[Timestamp]("end")
val word = row.getAs[String]("word")
val sum = row.getAs[Long]("sum")
(start,end,word,sum)
}).toDF("start","end","word","sum")
wordCounts.printSchema()
//4.构建StreamQuery 将结果写出去
val query = wordCounts.writeStream
.outputMode(OutputMode.Complete())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
Late Data & Watermarking
在窗口流处理当中,由于网络传输的问题,数据有可能出现乱序,比如说 计算节点以及读到12:11的数据已经完成计算了,也就意味着12:00~12:10
的窗口已经触发过了,后续抵达的数据的时间正常来说一定12:11以后的数据,但实际的使用场景中由于网络延迟或者故障导致出现乱序的数据,例如在12:11,接受到了12:04数据,此时Spark需要将12:04添加到12:00 ~ 12:10
窗口中,也就意味着Spark一直存储12:00 ~ 12:10
窗口的计算状态,因此默认Spark会一直留存窗口的计算状态,来保证乱序可以正常加入到窗口计算中。
由于流计算不同于批处理,需要24*7小时不间断的工作,因此对于流处理而言长时间存储的计算状态不太切合实际,因此我们需要告诉引擎什么时候可以丢弃计算中间状态。Spark2.1提出Watermarking
机制,可以让引擎知道什么时候丢弃窗口的计算状态。watermarker计算公式max event time seen by the engine - late threshold
(阈值),当窗口的endtime T
值 < watermarker
,这个时候Spark就可以丢弃该窗口的计算状态。如果后续还有数据落入到了 已经被淹没的窗口中,称为该数据为late data。由于窗口被淹没,因此窗口的状态就没法保证一定存在(Spark会尝试清理那些 已经被淹没窗口状态),迟到越久的数据被处理的几率越低。
一般情况下,窗口触发条件是:Watermarking >= 窗口 end time ,窗口输出的结果一般是FinalResult,但是在Structured Streaming中Watermarking 仅仅控制的是引擎什么时候删除窗口计算状态。如果用户想输出的FinalResult,也就意味着只用当Watermarking >= 窗口 end time
的时候才输出结果,用户必须配合Append输出模式
.
在使用水位线机制的时候用户不能使用
Complete 输出模式
。
问题:在某个时间点来了大量的数据,来的时间十分接近,频繁计算水位线,拉低计算性能
Strom隔一段时间计算一次水位线
只要是水位线一定是enventTime
update输出*
输出条件:
- 有数据落入到窗口
- 水位线没有没过
窗口可能会多次触发,但是一旦水位线没过窗口endtime,有可能数据就会被丢弃
//1.创建sparksession
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//3.执行SQL操作 API
// a 时间戳Long
import org.apache.spark.sql.functions._
val wordCounts = lines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), new Timestamp(ts(1).toLong), 1))
.toDF("word", "timestamp", "num")
.withWatermark("timestamp", "1 second")//设置水位线超时时间
.groupBy(
window($"timestamp", "4 seconds", "2 seconds"),
$"word")
.agg(sum("num") as "sum")
.map(row=> {
val start = row.getAs[Row]("window").getAs[Timestamp]("start")
val end = row.getAs[Row]("window").getAs[Timestamp]("end")
val word = row.getAs[String]("word")
val sum = row.getAs[Long]("sum")
(start,end,word,sum)
}).toDF("start","end","word","sum")
wordCounts.printSchema()
//4.构建StreamQuery 将结果写出去
val query = wordCounts.writeStream
.outputMode(OutputMode.Update())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
Append
输出前提:必须是水位线 >= 窗口的end time
//1.创建sparksession
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val lines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//3.执行SQL操作 API
// a 时间戳Long
import org.apache.spark.sql.functions._
val wordCounts = lines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), new Timestamp(ts(1).toLong), 1))
.toDF("word", "timestamp", "num")
.withWatermark("timestamp", "1 second")
.groupBy(
window($"timestamp", "4 seconds", "2 seconds"),
$"word")
.agg(sum("num") as "sum")
.map(row=> {
val start = row.getAs[Row]("window").getAs[Timestamp]("start")
val end = row.getAs[Row]("window").getAs[Timestamp]("end")
val word = row.getAs[String]("word")
val sum = row.getAs[Long]("sum")
(start,end,word,sum)
}).toDF("start","end","word","sum")
wordCounts.printSchema()
//4.构建StreamQuery 将结果写出去
val query = wordCounts.writeStream
.outputMode(OutputMode.Append())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
严格意义上说Spark并没有提供对 too late数据(在其他的流处理框架称为迟到,所谓late数据称为乱序)的处理机制,默认策略是丢弃。Storm和Flink都提供了对too late数据的处理方案,这一点Spark有待提高。
Join操作(spark2.0)
DStream流与批的join用transform
Structured Streaming 不仅仅支持和static的dataset/dataframe还支持流中dataset/dataframe。
Stream-static Joins(流与批)
//就这一个快的
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//001 apple 2 4.5
val orderLines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
import org.apache.spark.sql.functions._
val orderDF = orderLines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), ts(1), ts(2).toInt, ts(3).toDouble))
.toDF("id", "name", "count", "price")
val userDF = List(("001","zhangsan"),("002","lisi"),("003","wangwu")).toDF("uid","name")
//等价 userDF.join(orderDF,expr("id=uid"),"right_outer")
val result = userDF.join(orderDF,$"id" ===$"uid","right_outer")
//4.构建StreamQuery 将结果写出去
val query = result.writeStream
.outputMode(OutputMode.Append())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
stream-static 支持inner、left_outer
static-stream支持 inner、right_outer
join以流为准
Stream-stream Joins
(Spark 2.3)【鸡肋,唯一一个用水位线的流与流的join】
在Spark 2.3中,我们添加了对流流连接的支持,即您可以连接两个流Dataset/ DataFrame。流流的join最大挑战是系统需要缓存流的信息,让后和后续的输入的数据进行join,也就意味Spark需要缓存流的状态,这就会给框架的内存带来很大的压力。因此在Structured Stream中引入watermarker的概念,作用为了限制state的存活时间,告知spark什么时候可以释放的流中状态。
内连接可以使用任意一些column作为连接条件,然而在stream计算开始运行的时候 ,流计算的状态会持续的增长,因为必须存储所有传递过来的状态数据,然后和后续的新接收的数据做匹配。为了避免无限制的状态存储。一般需要定义额外的join的条件。例如限制一些old数据如果和新数据时间间隔大于某个阈值就不能匹配。因此可以删除这些陈旧的状态。简单来说需要做以下步骤:
- 两边流计算需要定义watermarker延迟,这样系统可以知道两个流的时间差值。
- 定制一下event time的限制条件,这样引擎可以计算出哪些数据old的不再需要了。可以使用一下两种方式定制
时间范围界定例如:
- JOIN ON leftTime BETWEEN rightTime AND rightTime + INTERVAL 1 HOUR (Range join)
- 基于Event-time Window 例如:JOIN ON leftTimeWindow = rightTimeWindow (window join)
range
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//001 apple 2 4.5 1566113400000 2019-08-18 15:30:00
val orderLines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//001 zhangsan 1566113400000 2019-08-18 15:30:00
val userLogin = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 8888)
.load()
import org.apache.spark.sql.functions._
val userDF = userLogin.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), ts(1),new Timestamp(ts(2).toLong)))
.toDF("uid","uname","tlogin")
.withWatermark("tlogin","1 seconds")
val orderDF = orderLines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), ts(1), ts(2).toInt, ts(3).toDouble,new Timestamp(ts(4).toLong)))
.toDF("id", "name", "count", "price","torder")
.withWatermark("torder","1 second")
val joinExpr=
"""
id=uid AND
torder >= tlogin AND
torder <= tlogin + interval 2 seconds
"""
val result=userDF.join(orderDF, expr(joinExpr),"left_outer")
//4.构建StreamQuery 将结果写出去
val query = result.writeStream
.outputMode(OutputMode.Append())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
window
val spark = SparkSession
.builder
.appName("windowWordcount")
.master("local[6]")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//001 apple 2 4.5 1566113400000 2019-08-18 15:30:00
val orderLines = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 9999)
.load()
//001 zhangsan 1566113400000 2019-08-18 15:30:00
val userLogin = spark.readStream
.format("socket")
.option("host", "CentOS")
.option("port", 8888)
.load()
import org.apache.spark.sql.functions._
val userDF = userLogin.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), ts(1),new Timestamp(ts(2).toLong)))
.toDF("uid","uname","tlogin")
.withWatermark("tlogin","1 seconds")
.withColumn("leftWindow",window($"tlogin","10 seconds","5 seconds"))
val orderDF = orderLines.as[String].map(_.split("\\s+"))
.map(ts => (ts(0), ts(1), ts(2).toInt, ts(3).toDouble,new Timestamp(ts(4).toLong)))
.toDF("id", "name", "count", "price","torder")
.withWatermark("torder","1 second")
.withColumn("rightWindow",window($"torder","10 seconds","5 seconds"))
val joinExpr=
"""
id=uid AND leftWindow = rightWindow
"""
val result=userDF.join(orderDF, expr(joinExpr))
//4.构建StreamQuery 将结果写出去
val query = result.writeStream
.outputMode(OutputMode.Append())
.format("console")
.start()
//5.关闭流
query.awaitTermination()
将任务打包递交给集群
id name 数量 价格 时间 类目
1 zhangsan 2 3.5 2019-10-10 10:10:00 水果
1 zhangsan 1 1500 2019-10-10 10:10:00 手机
...
统计出年度用户总消费 - kafka
1 zhangsan 水果 50000
1 zhangsan 手机 xxx
package com.baizhi
import java.util.regex.{Matcher, Pattern}
object CleanData {
//自定义方法【使用正则表达式清洗数据】
def clean(log:String):(Matcher)={
//定义正则表达式
val regex="(\\d+)\\s(.*)\\s(\\d+)\\s(\\d+\\.\\d+)\\s(\\d{4}).*\\d{2}\\s(.*)"
//注册正则表达式
val pattern = Pattern.compile(regex)
//进行数据清洗
pattern.matcher(log)
}
//自定义方法【检测输入的数据的合法性】
def isLegal(log:String):Boolean={
clean(log).matches()
}
//自定义方法【抽取数据】
def parse(log:String):(String,String,Int,Double,String,String)={
val matcher = clean(log)
matcher.matches()
(matcher.group(1), matcher.group(2), matcher.group(3).toInt,matcher.group(4).toDouble, matcher.group(5), matcher.group(6))
}
}
package com.baizhi
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.OutputMode
object UserOrderAnalyze {
def main(args: Array[String]): Unit = {
//1.创建sparksession
val spark = SparkSession
.builder
.appName("UserOrderAnalyze")
//.master("local[6]")
.master("spark://CentOS:7077")
.getOrCreate()
import spark.implicits._
spark.sparkContext.setLogLevel("FATAL")
//2.通过流的方式创建Dataframe - 细化
val lines = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "CentOS:9092")
.option("subscribe", "topic05")
.load()
//自定义算法
spark.udf.register("order_cost",(num:Int,unitPrice:Double)=>{
num*unitPrice
})
//3.执行SQL操作 API
// 1 zhangsan 2 3.5 2019-10-10 10:10:00 水果
//1 zhangsan 水果 50000
import org.apache.spark.sql.functions._
val userOrderDF = lines
.selectExpr("CAST(value AS STRING)")
.as[String]
.filter(CleanData.isLegal(_))
.map(CleanData.parse(_))
.toDF("id", "name", "num","unitPrice","year","category")
.selectExpr("id","name","order_cost(num,unitPrice) as subtotal","year","category")
.groupBy(
$"id",$"name",$"year",$"category")
.agg(sum("subtotal") as "total")
.as[(String,String,String,String,Double)]
.map(t=>(t._1+":"+t._2+":"+t._3,t._4+"\t"+t._5))
.toDF("key","value") //输出字段中必须有value string类型
userOrderDF.printSchema()
//4.构建StreamQuery 将结果写出去
val query = userOrderDF.writeStream
.outputMode(OutputMode.Update())
.format("kafka")
.option("topic","topic06")
.option("kafka.bootstrap.servers","CentOS:9092")
.option("checkpointLocation","file:///E:/write/checkpoints04")//设置程序的检查点
.start()
//5.关闭流
query.awaitTermination()
}
}
- 在项目中修改依赖pom
<properties>
<spark.version>2.4.3</spark.version>
<scala.version>2.11</scala.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_${scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<!--在执行package时候,将scala源码编译进jar-->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>4.0.1</version>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
<!--将依赖jar打入到jar中-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
- 任务提交(fatjar)
[aaa@qq.com spark-2.4.3]# ./bin/spark-submit --master spark://CentOS:7077 --deploy-mode cluster --class com.baizhi.UserOrderAnalyze --total-executor-cores 6 /root/sparkfinal-1.0-SNAPSHOT.jar
-
发布
[aaa@qq.com kafka_2.11-2.2.0]# bin/kafka-console-producer.sh --topic topic05 --broker-list CentOS:9092
-
订阅
[aaa@qq.com spark-2.4.3]# bin/kafka-console-consumer.sh --topic topic06 --bootstrap-server CentOS:9092 --property print.key=true --property print.value=true
-
远程jar下载(网络-不推荐)
[aaa@qq.com spark-2.4.3]# ./bin/spark-submit --master spark://CentOS:7077
--deploy-mode cluster
--class com.baizhi.demo.UserOrderAnalyzer
--total-executor-cores 6
--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.3
/root/original-finalspark-1.0-SNAPSHOT.jar
build>
- 任务提交(fatjar)
~~~shell
[aaa@qq.com spark-2.4.3]# ./bin/spark-submit --master spark://CentOS:7077 --deploy-mode cluster --class com.baizhi.UserOrderAnalyze --total-executor-cores 6 /root/sparkfinal-1.0-SNAPSHOT.jar
-
发布
[aaa@qq.com kafka_2.11-2.2.0]# bin/kafka-console-producer.sh --topic topic05 --broker-list CentOS:9092
-
订阅
[aaa@qq.com spark-2.4.3]# bin/kafka-console-consumer.sh --topic topic06 --bootstrap-server CentOS:9092 --property print.key=true --property print.value=true
-
远程jar下载(网络-不推荐)
[aaa@qq.com spark-2.4.3]# ./bin/spark-submit --master spark://CentOS:7077
--deploy-mode cluster
--class com.baizhi.demo.UserOrderAnalyzer
--total-executor-cores 6
--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.3
/root/original-finalspark-1.0-SNAPSHOT.jar
一般企业内网服务器不会连接外网
下一篇: Structured Streaming
推荐阅读
-
用python + hadoop streaming 分布式编程(一) -- 原理介绍,样例程序与本地调试
-
nginx 0.8.54/1.0.0 在cygwin环境下的编译(包括 nginx_mod_h264_streaming-2.2.7)
-
nginx 0.8.54/1.0.0 在cygwin环境下的编译(包括 nginx_mod_h264_streaming-2.2.7)
-
录音精灵Apowersoft Streaming Audio Recorder安装及激活图文教程(附注册码)
-
Apache 流框架 Flink,Spark Streaming,Storm对比分析(一)
-
Apache 流框架 Flink,Spark Streaming,Storm对比分析(二)
-
使用IIS Live Smooth Streaming技术搭建流媒体直播系统
-
.NET Core + gRPC 实现数据串流 (Streaming)
-
用python + hadoop streaming 分布式编程(一) -- 原理介绍,样例程序与本地调试
-
Hadoop streaming详细介绍