欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python神经网络编程 手写数字识别

程序员文章站 2022-05-21 23:52:49
...
import numpy
import scipy.special
#import matplotlib.pyplot

class neuralNetwork:
    def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
        self.inodes=inputnodes
        self.hnodes=hiddennodes
        self.onodes=outputnodes
        
        self.lr=learningrate
    
        self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
        self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
        
        self.activation_function=lambda x: scipy.special.expit(x)
        pass
    
    def train(self,inputs_list,targets_list):
        inputs=numpy.array(inputs_list,ndmin=2).T
        targets=numpy.array(targets_list,ndmin=2).T
        
        hidden_inputs=numpy.dot(self.wih,inputs)
        hidden_outputs=self.activation_function(hidden_inputs)
        
        final_inputs=numpy.dot(self.who,hidden_outputs)
        final_outputs=self.activation_function(final_inputs)
        
        output_errors=targets-final_outputs
        hidden_errors=numpy.dot(self.who.T,output_errors)
        
        self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
        self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
        pass
    
    def query(self,input_list):
        inputs=numpy.array(input_list,ndmin=2).T
        
        hidden_inputs=numpy.dot(self.wih,inputs)
        hidden_outputs=self.activation_function(hidden_inputs)
        
        final_inputs=numpy.dot(self.who,hidden_outputs)
        final_outputs=self.activation_function(final_inputs)
        
        return final_outputs


input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)

training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")
epochs=2
for e in range(epochs):
    for record in training_data_list:
        all_values=record.split(",")
        inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
        targets=numpy.zeros(output_nodes)+0.01
        targets[int(all_values[0])]=0.99
        n.train(inputs,targets)
    
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#    print(i)

test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")
test_data_list=test_data_file.readlines()
test_data_file.close()

scorecard=[]


for record in test_data_list:
    all_values=record.split(",")
    correct_lable=int(all_values[0])
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    outputs=n.query(inputs)
    label=numpy.argmax(outputs)
    if(label==correct_lable):
        scorecard.append(1)
    else:
        scorecard.append(0)

scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])

#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))

#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#    print(i)

 

《python神经网络编程》中代码,仅做记录,以备后用。

 

image_file_name=r"*.JPG"
img_array=scipy.misc.imread(image_file_name,flatten=True)

img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01

图片对应像素的读取。因训练集灰度值与实际相反,故用255减取反。

 

import numpy
import scipy.special
#import matplotlib.pyplot
import scipy.misc
from PIL import Image
class neuralNetwork:
    def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
        self.inodes=inputnodes
        self.hnodes=hiddennodes
        self.onodes=outputnodes
        
        self.lr=learningrate
    
        self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes))
        self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes))
        
        self.activation_function=lambda x: scipy.special.expit(x)
        pass
    
    def train(self,inputs_list,targets_list):
        inputs=numpy.array(inputs_list,ndmin=2).T
        targets=numpy.array(targets_list,ndmin=2).T
        
        hidden_inputs=numpy.dot(self.wih,inputs)
        hidden_outputs=self.activation_function(hidden_inputs)
        
        final_inputs=numpy.dot(self.who,hidden_outputs)
        final_outputs=self.activation_function(final_inputs)
        
        output_errors=targets-final_outputs
        hidden_errors=numpy.dot(self.who.T,output_errors)
        
        self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs))
        self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
        pass
    
    def query(self,input_list):
        inputs=numpy.array(input_list,ndmin=2).T
        
        hidden_inputs=numpy.dot(self.wih,inputs)
        hidden_outputs=self.activation_function(hidden_inputs)
        
        final_inputs=numpy.dot(self.who,hidden_outputs)
        final_outputs=self.activation_function(final_inputs)
        
        return final_outputs


input_nodes=784
hidden_nodes=100
output_nodes=10
learning_rate=0.1
n=neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)

training_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_train.csv","r")
training_data_list=training_data_file.readlines()
training_data_file.close()
#print(n.wih)
#print("")

#epochs=2
#for e in range(epochs):
for record in training_data_list:
    all_values=record.split(",")
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    targets=numpy.zeros(output_nodes)+0.01
    targets[int(all_values[0])]=0.99
    n.train(inputs,targets)

#image_file_name=r"C:\Users\lsy\Desktop\nn\1000-1.JPG"
'''
img_array=scipy.misc.imread(image_file_name,flatten=True)

img_data=255.0-img_array.reshape(784)
image_data=(img_data/255.0*0.99)+0.01

#inputs=(numpy.asfarray(image_data)/255.0*0.99)+0.01
outputs=n.query(image_data)
label=numpy.argmax(outputs)
print(label)
'''
#print(n.wih)
#print(len(training_data_list))
#for i in training_data_list:
#    print(i)

test_data_file=open(r"C:\Users\lsy\Desktop\nn\mnist_test.csv","r")

test_data_list=test_data_file.readlines()
test_data_file.close()

scorecard=[]

total=[0,0,0,0,0,0,0,0,0,0]
rightsum=[0,0,0,0,0,0,0,0,0,0]

for record in test_data_list:
    all_values=record.split(",")
    correct_lable=int(all_values[0])
    inputs=(numpy.asfarray(all_values[1:])/255.0*0.99)+0.01
    outputs=n.query(inputs)
    label=numpy.argmax(outputs)
    total[correct_lable]+=1
    if(label==correct_lable):
        scorecard.append(1)
        rightsum[correct_lable]+=1
    else:
        scorecard.append(0)

scorecard_array=numpy.asarray(scorecard)
print(scorecard_array)
print("")
print(scorecard_array.sum()/scorecard_array.size)
print("")
print(total)
print(rightsum)
for i in range(10):
    print((rightsum[i]*1.0)/total[i])

#all_value=test_data_list[0].split(",")
#input=(numpy.asfarray(all_value[1:])/255.0*0.99)+0.01
#print(all_value[0])

#image_array=numpy.asfarray(all_value[1:]).reshape((28,28))

#matplotlib.pyplot.imshow(image_array,cmap="Greys",interpolation="None")
#matplotlib.pyplot.show()
#nn=n.query((numpy.asfarray(all_value[1:])/255.0*0.99)+0.01)
#for i in nn :
#    print(i)

 

尝试统计了对于各个数据测试数量及正确率。

python神经网络编程 手写数字识别

原本想验证书后向后查询中数字‘9’识别模糊是因为训练数量不足或错误率过高而产生,然最终结果并不支持此猜想。

另书中只能针对特定像素的图片进行学习,真正手写的图片并不能满足训练条件,实际用处仍需今后有时间改进。