《连连看》算法c语言演示(自动连连看)
程序员文章站
2022-05-21 19:49:31
(图片是游戏的示意图,来自互联网,与本文程序无关) 看题目就知道是写给初学者的,没需要的就别看了,自己都觉得怪无聊的。 很多游戏的耐玩性都来自精巧的算法,特别是人工智能的水平。比如前几天看了著名的Alpha GO的算法,用了复杂的人工智能网络。而最简单的,可能就是连连看了,所以很多老师留作业,直接就 ......
(图片是游戏的示意图,来自互联网,与本文程序无关)
看题目就知道是写给初学者的,没需要的就别看了,自己都觉得怪无聊的。
很多游戏的耐玩性都来自精巧的算法,特别是人工智能的水平。比如前几天看了著名的Alpha GO的算法,用了复杂的人工智能网络。而最简单的,可能就是连连看了,所以很多老师留作业,直接就是实现连连看。
连连看游戏的规则非常简单:
- 两个图片相同。
- 两个图片之间,沿着相邻的格子画线,中间不能有障碍物。
- 画线中间最多允许2个转折。
所以算法主要是这样几部分:
- 用数据结构描述图板。很简单,一个2维的整数数组,数组的值就是图片的标志,相同的数字表示相同的图片。有一个小的重点就是,有些连连看的地图中,允许在边界的两个图片,从地图外连线消除。这种情况一般需要建立的图板尺寸,比实际显示的图板,周边大一个格子,从而描述可以连线的空白外边界。本例中只是简单的使用完整的图板,不允许利用边界外连线。
- 生成图板。通常用随机数产生图片ID来填充图板就好。比较复杂的游戏,会有多种的布局方式,例如两个三角形。这种一般要手工编辑图板模板,在允许填充的区域事先用某个特定的整数值来标注,随后的随机数填充只填充允许填充的区域。本例中只是简单的随机填充。
- 检查连线中的障碍物。确定有障碍物的关键在于确定什么样的格子是空。通常定义格子的值为0就算空。要求所有的图片ID从1开始顺序编码。复杂的游戏还会定义负数作为特定的标志,比如允许填充区之类的。
- 检查直接连接:两张图片的坐标,必然x轴或者y轴有一项相同,表示两张图片在x轴或者y轴的同一条线上才可能出现直接连接。随后循环检查两者之间是否有障碍物即可确定。
- 检查一折连接:与检查直接连接相反,两个图片必须不在一条直线上,才可能出现一折连接,也就是x/y必须都不相同。随后以两张图片坐标,可以形成一个矩阵,矩阵的一对对角是两张图片,假设是A/B两点。矩阵另外两个对角分别是C1/C2,分别检查A/C1和C1/B或者A/C2和C2/B能同时形成直线连接,则A图片到B图片的1折连接可以成立。描述比较苍白,建议你自己画张简单的图就容易理解了。在一折连接的检查中,会调用上面的直线连接的检测至少2次,这种调用的方式有点类似递归的调用。
- 检查两折连接:同样假设两张图片分别为A/B两点,在A点的X+/X-方向/Y+方向/Y-方向,共4个方向上循环查找是否存在一个点C,使得A到C为直线连接,C到B为1折连接,则两折连接成立。这中间,会调用前面的直接连接检测和一折连接检测。
用到的算法基本就是这些,下面看程序。本程序使用GCC或者CLANG编译的,可以在Linux或者Mac直接编译执行。
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<time.h> //常量习惯定义在程序一开始,以便将来的修改,比如重新定义一个更大的地图界限 //定义图板尺寸 #define _width 20 #define _height 20 //定义数组矩阵中,0表示该格子为空 #define empty (0) //定义共有20种图片 #define _pics (20) //定义在图板中随机产生100*2个图片的填充 //使用100是为了每次产生2个相同的图片,从而保证整个图可以消除完 #define _datas (100) //c语言没有bool类型,为了方便自定义一个 typedef int bool; #define TRUE (1) #define FALSE (0) //定义一个结构用来描述一个点坐标 typedef struct { int x; int y; } _point; //描述图板的数组 int map[_width][_height]; //-------------------------init map---------------------- //从图板中获取一个空白格子的坐标,这种方法随着填充图片的增加, //效率会急剧降低,不过简单实用,这么小的图板对cpu来说也不算什么 _point getRndEmptyBox(){ int x,y; while(TRUE){ //gcc的随机数跟windows的随机数产生规则不同 //linux是产生从0开始到RAND_MAX的一个正整数 //如果移植到windows,这部分要修改 int x=rand() % _width; int y=rand() % _height; if (map[x][y]==empty){ _point r; r.x=x; r.y=y; return r; } } } //设置一对随机图片 void setRandPic(){ _point p; //+1是为了防止出现随机数为0的情况,那样等于填充了空白 int pic=rand() % _pics + 1; p = getRndEmptyBox(); map[p.x][p.y]=pic; //printf("[%02d,%02d]=%02d\n",p.x,p.y,pic); p = getRndEmptyBox(); map[p.x][p.y]=pic; return; } //用随机图片填充整个图板 void setRndMap(){ int i; for(i=0;i<_datas;i++){ setRandPic(); } return; } //-----------------------------show status -------------------- //显示当前的图板情况 void dumpMap(){ int i,j; printf("--: "); for(i=0;i<_width;i++){ printf("%02d ",i); } printf("\n"); for(i=0;i<_height;i++){ printf("%02d: ",i); for(j=0;j<_width;j++){ printf("%02d ",map[j][i]); } printf("\n"); } } //显示当前的图板情况,并且使用红色标注上将要消除的2个点 //显示部分使用了linux的终端控制专用方式,移植到windows时需要修改 void dumpMapWithHotPoint(_point c1,_point c2){ int x,y; //为了方便计数,显示x/y轴格子编号 printf("--: "); for(x=0;x<_width;x++){ printf("%02d ",x); } printf("\n"); for(y=0;y<_height;y++){ printf("%02d: ",y); for(x=0;x<_width;x++){ if ((c1.x==x && c1.y==y) || (c2.x==x && c2.y==y)) printf("\e[1;31m%02d\e[0m ",map[x][y]); else printf("%02d ",map[x][y]); } printf("\n"); } } //-------------------------search path-------------------- //检查直接连接,返回成功或者失败 bool havePathCorner0(_point p1,_point p2){ if (p1.x != p2.x && p1.y != p2.y) return FALSE; // not in the same line int min,max; if (p1.x == p2.x){ min = p1.y < p2.y ? p1.y : p2.y; max = p1.y > p2.y ? p1.y : p2.y; for(min++;min < max;min++){ if(map[p1.x][min] != empty) return FALSE; //have block false } } else { min = p1.x < p2.x ? p1.x : p2.x; max = p1.x > p2.x ? p1.x : p2.x; for(min++;min < max;min++){ if(map[min][p1.y] != empty) return FALSE; //have block false } } return TRUE; } //检查1折连接,返回1个点, //如果点的坐标为负表示不存在1折连接 _point havePathCorner1(_point p1,_point p2){ _point nullPoint; nullPoint.x=nullPoint.y=-1; if (p1.x == p2.x || p1.y == p2.y) return nullPoint; _point c1,c2; c1.x=p1.x; c1.y=p2.y; c2.x=p2.x; c2.y=p1.y; if (map[c1.x][c1.y] == empty){ bool b1=havePathCorner0(p1,c1); bool b2=havePathCorner0(c1,p2); if (b1 && b2) return c1; } if (map[c2.x][c2.y] == empty){ bool b1=havePathCorner0(p1,c2); bool b2=havePathCorner0(c2,p2); if (b1 && b2) return c2; } return nullPoint; } //检查两折连接,返回两个点, //返回点坐标为负表示不存在两折连接 //其中使用了4个方向的循环查找 _point result[2]; _point *havePathCorner2(_point p1,_point p2){ int i; _point *r=result; //search direction 1 for(i=p1.y+1;i<_height;i++){ if (map[p1.x][i] == empty){ _point c1; c1.x=p1.x; c1.y=i; _point d1=havePathCorner1(c1,p2); if (d1.x != -1){ r[0].x=c1.x; r[0].y=c1.y; r[1].x=d1.x; r[1].y=d1.y; return r; } } else break; } //search direction 2 for(i=p1.y-1;i>-1;i--){ if (map[p1.x][i] == empty){ _point c1; c1.x=p1.x; c1.y=i; _point d1=havePathCorner1(c1,p2); if (d1.x != -1){ r[0].x=c1.x; r[0].y=c1.y; r[1].x=d1.x; r[1].y=d1.y; return r; } } else break; } //search direction 3 for(i=p1.x+1;i<_width;i++){ if (map[i][p1.y] == empty){ _point c1; c1.x=i; c1.y=p1.y; _point d1=havePathCorner1(c1,p2); if (d1.x != -1){ r[0].x=c1.x; r[0].y=c1.y; r[1].x=d1.x; r[1].y=d1.y; return r; } } else break; } //search direction 4 for(i=p1.x-1;i>-1;i--){ if (map[i][p1.y] == empty){ _point c1; c1.x=i; c1.y=p1.y; _point d1=havePathCorner1(c1,p2); if (d1.x != -1){ r[0].x=c1.x; r[0].y=c1.y; r[1].x=d1.x; r[1].y=d1.y; return r; } } else break; } r[1].x=r[0].x=r[0].y=r[1].y=-1; return r; } //汇总上面的3种情况,查找两个点之间是否存在合法连接 bool havePath(_point p1,_point p2){ if (havePathCorner0(p1,p2)){ printf("[%d,%d] to [%d,%d] have a direct path.\n",p1.x,p1.y,p2.x,p2.y); return TRUE; } _point r=havePathCorner1(p1,p2); if (r.x != -1){ printf("[%d,%d] to [%d,%d] have a 1 cornor path throught [%d,%d].\n", p1.x,p1.y,p2.x,p2.y,r.x,r.y); return TRUE; } _point *c=havePathCorner2(p1,p2); if (c[0].x != -1){ printf("[%d,%d] to [%d,%d] have a 2 cornor path throught [%d,%d] and [%d,%d].\n", p1.x,p1.y,p2.x,p2.y,c[0].x,c[0].y,c[1].x,c[1].y); return TRUE; } return FALSE; } //对于给定的起始点,查找在整个图板中,起始点之后的所有点, //是否存在相同图片,并且两张图片之间可以合法连线 bool searchMap(_point p1){ int ix,iy; bool inner1=TRUE; //printf("begin match:%d,%d\n",p1.x,p1.y); int c1=map[p1.x][p1.y]; for (iy=p1.y;iy<_height;iy++){ for(ix=0;ix<_width;ix++){ //遍历查找整个图板的时候,图板中,起始点之前的图片实际已经查找过 //所以应当从图片之后的部分开始查找才有效率 //遍历的方式是逐行、每行中逐个遍历 //在第一次循环的时候,x坐标应当也是起始点的下一个,所以使用inner1来确认第一行循环 if (inner1){ ix=p1.x+1; inner1=FALSE; } if(map[ix][iy] != c1){ //printf("skip:%d,%d\n",ix,iy); //continue; } else { _point p2; p2.x=ix; p2.y=iy; if (!havePath(p1,p2)){ //printf("No path from [%d,%d] to [%d,%d]\n",p1.x,p1.y,p2.x,p2.y); } else { dumpMapWithHotPoint(p1,p2); map[p1.x][p1.y]=empty; map[p2.x][p2.y]=empty; //dumpMap(); return TRUE; } } } }; return FALSE; } //这个函数式扫描全图板,自动连连看 bool searchAllMap(){ int ix,iy; bool noPathLeft=FALSE; while(!noPathLeft){ noPathLeft=TRUE; for (iy=0;iy<_height;iy++){ for(ix=0;ix<_width;ix++){ if(map[ix][iy] != empty){ _point p; p.x=ix; p.y=iy; if(searchMap(p) && noPathLeft) noPathLeft=FALSE; } } } printf("next loop...\n"); }; return TRUE; } //-----------------main----------------------------- int main(int argc,char **argv){ srand((unsigned)time(NULL)); memset(map,0,sizeof(map)); setRndMap(); dumpMap(); searchAllMap(); }
运行结果会是类似这样:
link> ./linktest --: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 00: 14 00 02 16 18 06 00 00 00 00 00 12 13 04 00 00 00 19 18 00 01: 00 10 00 12 00 05 00 00 00 00 00 00 00 15 09 00 00 00 18 00 02: 00 00 03 00 00 13 16 00 05 17 00 17 00 00 07 05 00 00 05 16 03: 02 00 00 00 00 13 00 17 15 00 00 00 00 00 00 02 00 11 15 08 04: 05 11 00 08 05 00 06 00 00 00 07 06 00 00 06 00 15 17 00 00 05: 17 18 16 11 01 04 00 16 18 00 04 01 00 02 19 18 00 11 16 00 06: 00 01 00 11 00 00 00 12 03 00 02 17 01 00 00 19 00 13 07 03 07: 06 10 00 10 10 00 00 02 00 00 11 15 09 18 00 00 00 00 07 00 08: 09 14 06 19 00 09 00 00 09 18 00 00 00 12 18 05 00 11 00 18 09: 01 00 00 07 06 00 15 00 00 00 00 00 00 02 11 00 00 00 08 00 10: 00 00 02 03 00 15 00 00 19 00 00 07 00 12 00 00 10 00 19 00 11: 12 11 14 09 10 00 00 00 19 18 00 13 05 11 05 00 00 18 00 07 12: 11 00 09 00 00 00 00 10 03 00 00 00 00 00 00 00 16 05 12 00 13: 02 17 00 05 00 00 00 00 04 00 07 00 01 00 09 00 00 00 19 00 14: 07 00 00 17 00 00 06 00 00 14 00 00 05 00 09 00 08 00 18 00 15: 00 02 19 00 04 16 00 00 14 00 00 15 16 14 00 00 00 00 00 12 16: 00 02 00 16 09 00 00 00 00 00 00 09 13 01 19 15 00 17 00 15 17: 00 18 00 00 08 00 00 00 10 00 00 00 00 06 00 09 02 06 00 01 18: 00 00 15 00 00 02 08 00 09 07 00 18 06 00 09 00 11 00 00 15 19: 06 18 00 00 00 02 17 00 00 00 19 00 19 00 00 00 00 04 00 03 [18,0] to [18,1] have a direct path. --: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 00: 14 00 02 16 18 06 00 00 00 00 00 12 13 04 00 00 00 19 18 00 01: 00 10 00 12 00 05 00 00 00 00 00 00 00 15 09 00 00 00 18 00 02: 00 00 03 00 00 13 16 00 05 17 00 17 00 00 07 05 00 00 05 16 03: 02 00 00 00 00 13 00 17 15 00 00 00 00 00 00 02 00 11 15 08 04: 05 11 00 08 05 00 06 00 00 00 07 06 00 00 06 00 15 17 00 00 05: 17 18 16 11 01 04 00 16 18 00 04 01 00 02 19 18 00 11 16 00 06: 00 01 00 11 00 00 00 12 03 00 02 17 01 00 00 19 00 13 07 03 07: 06 10 00 10 10 00 00 02 00 00 11 15 09 18 00 00 00 00 07 00 08: 09 14 06 19 00 09 00 00 09 18 00 00 00 12 18 05 00 11 00 18 09: 01 00 00 07 06 00 15 00 00 00 00 00 00 02 11 00 00 00 08 00 10: 00 00 02 03 00 15 00 00 19 00 00 07 00 12 00 00 10 00 19 00 11: 12 11 14 09 10 00 00 00 19 18 00 13 05 11 05 00 00 18 00 07 12: 11 00 09 00 00 00 00 10 03 00 00 00 00 00 00 00 16 05 12 00 13: 02 17 00 05 00 00 00 00 04 00 07 00 01 00 09 00 00 00 19 00 14: 07 00 00 17 00 00 06 00 00 14 00 00 05 00 09 00 08 00 18 00 15: 00 02 19 00 04 16 00 00 14 00 00 15 16 14 00 00 00 00 00 12 16: 00 02 00 16 09 00 00 00 00 00 00 09 13 01 19 15 00 17 00 15 17: 00 18 00 00 08 00 00 00 10 00 00 00 00 06 00 09 02 06 00 01 18: 00 00 15 00 00 02 08 00 09 07 00 18 06 00 09 00 11 00 00 15 19: 06 18 00 00 00 02 17 00 00 00 19 00 19 00 00 00 00 04 00 03 ...... [10,17] to [19,18] have a 1 cornor path throught [10,18]. --: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 06: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 07: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 09: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 13: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 14: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 15: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 16: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 17: 00 00 00 00 00 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 18: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12 19: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 next loop...