欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【PAT】1122. Hamiltonian Cycle (25)【模拟】

程序员文章站 2022-03-08 16:17:52
...

题目描述

The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

翻译:“哈密顿环问题”是寻找一个包含图中每个顶点的简单循环。这样的循环称为“哈密顿环”。
在这个问题中,你要判断一个给定的循环是否是一个哈密顿循环。

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V1 V2​ … Vn

where n is the number of vertices in the list, and Vi’s are the vertices on a path.

翻译:每个输入文件包含一组测试数据。对于每组输入数据,第一行包括两个正整数N(2<N≤200), 表示顶点的数量,和M,表示一个无向图中边的条数。接下来M行, 每行按照 Vertex1 Vertex2的格式描述一条边,顶点被标记为1到N。接下来一行给定一个正整数K,表示查询的数量,接着按照以下格式给出K组查询:

n V1 V2​ … Vn
n表示顶点的个数,Vi表示路径上的节点数。

Output Specification:

For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.
翻译:对于每个查询,如果是一个哈密顿环,则输出一行YES,否则输出NO。


Sample Input:

6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1


Sample Output:

YES
NO
NO
NO
YES
NO


解题思路

这道题不用想得太复杂,就是路径开始和结束相同,包含所有顶点且除起点外每个顶点只出现一次,如果这两个条件满足在计算每相邻的两个点之间是否有边,如果没有直接退出循环。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#define INF 99999999
using namespace std;
int N,M,K;
bool v[210][210];
int dot[210];
int main(){
	memset(v,0,sizeof(v));
	scanf("%d%d",&N,&M);
	int a,b; 
	for(int i=0;i<M;i++){
		scanf("%d%d",&a,&b);
		v[a][b]=v[b][a]=true;	
	}
	scanf("%d",&K);
	for(int i=0;i<K;i++){
		memset(dot,0,sizeof(dot));
		int n,flag=0;
		scanf("%d",&n);
		if(n!=N+1)flag=1;
		int first=0,pre=0,pro=0;
		for(int j=0;j<n;j++){
			scanf("%d",&pro);
			dot[pro]++;
			if(dot[pro]>1&&j!=n-1) flag=1;
			if(j==n-1&&pro!=first) flag=1;
			if(!flag){
				if(j==0) first=pre=pro;
				else {
					if(v[pre][pro]!=true)flag=1;
					pre=pro;
				}
			}
		}
		if(flag==1)printf("NO\n");
		else 	   printf("YES\n");
	}
	return 0;
}