MATLAB简单机器人视觉控制(仿真1)
程序员文章站
2022-05-21 09:30:11
...
1、前记:在MATLAB论坛下载了个源码(具体如下),主要功能是利用MATLAB打开摄像头识别红色物体,获取坐标值,然后传给有robotics toolbox 建立的机器人使其模型运动。
2、源码如下:(down下来的代码运行时出错)看别人在YouTube上传的视频没有错啊!
clear all;
t3r=[0 1 0 0;0 1 0 0;0 1 0 0];
r3bot=robot(t3r);
a = imaqhwinfo;
%[camera_name, camera_id, format] = getCameraInfo(a);
f1=figure;
f2=figure;
% Capture the video frames using the videoinput function
% You have to replace the resolution & your installed adaptor name.
vid = videoinput('winvideo',1);
%sls=videoinput('winvideo',1)
% Set the properties of the video object
set(vid, 'FramesPerTrigger', Inf);
set(vid, 'ReturnedColorspace', 'rgb')
vid.FrameGrabInterval = 1;
%start the video aquisition here
start(vid)
n=50;
% Set a loop that stop after 100 frames of aquisition
while(vid.FramesAcquired<=500)
% Get the snapshot of the current frame
data = getsnapshot(vid);
% Now to track red objects in real time
% we have to subtract the red component
% from the grayscale image to extract the red components in the image.
diff_im = imsubtract(data(:,:,1), rgb2gray(data));
%Use a median filter to filter out noise
diff_im = medfilt2(diff_im, [3 3]);
% Convert the resulting grayscale image into a binary image.
diff_im = im2bw(diff_im,0.18);
% Remove all those pixels less than 300px
diff_im = bwareaopen(diff_im,300);
% Label all the connected components in the image.
bw = bwlabel(diff_im, 8);
% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
stats = regionprops(bw, 'BoundingBox', 'Centroid');
% Display the image
figure(f1)
imshow(data)
%This is a loop to bound the red objects in a rectangular box.
for object = 1:length(stats)
bb = stats(object).BoundingBox;
bc = stats(object).Centroid;
rectangle('Position',bb,'EdgeColor','r','LineWidth',2);
a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), ' Y: ', num2str(round(bc(2)))));
set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 'Color', 'yellow');
q=[60+bc(1),30-bc(2),45+bc(1)]*pi/180;
t=fkine(r3bot,q);
q1=ikine(r3bot,t,[1,-5,1]);
q2=ikine(r3bot,t,[1,-.5,1]);
figure(f2)
plot(r3bot,q1);
plot(r3bot,q1);
end
% %%%%%%%%%%%%%%%%%%%Robotics%%%%%%%%%%%%%
end
% Both the loops end here.
% Stop the video aquisition.
stop(vid);
% Flush all the image data stored in the memory buffer.
%flushdata(vid);
% Clear all variables
%clear all
%sprintf('%s','That was all about Image tracking, Guess that was pretty easy :) ')
YouTube视频截图;
3、后记:强烈希望有大神对疑惑给出解释。
不知道问题具体出在哪,在解决过程中重新建立了一个机器人模型,在Robotic部分修改了些参数格式(代码如下),发现可以是机器人模型运动,但是有些卡顿。我怀疑是逆解速度慢导致的,也有可能是因为摄像机获取每一帧图像的时间延迟。所以这里记下来,希望感兴趣的朋友们大家可以交流交流,如何提高逆解运算速度,有哪些优化手段可以解决这类问题?下面的动图也可看出机械臂模型运动不优美。。。
建立机器人模型部分
L1=Link([0 0.4 0.025 pi/2 0 ]);
L2=Link([pi/2 0 0.56 0 0 ]);
L3=Link([0 0 0.035 pi/2 0 ]);
L4=Link([0 0.515 0 pi/2 0 ]);
L5=Link([pi 0 0 pi/2 0 ]);
L6=Link([0 0.08 0 0 0 ]);
t3r=[L1;L2;L3;L4;L5;L6];
bot=SerialLink(t3r,'name','Useless');
a = imaqhwinfo;
逆解参数格式修改
q=[bc(1),bc(2),bc(1),1,1,1]*pi/180;
t=fkine(bot,q);
q1=ikine(bot,t);
figure(f2)
plot(bot,q1);
上一篇: MATLAB机器人可视化
下一篇: 六轴机器人matlab工作空间分析