欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  移动技术

iOS - Block

程序员文章站 2022-03-08 15:21:54
1. Block 1.1 什么是Block 之前都是对block的简单实用,这里重新了解下。 代码块Block是苹果在iOS4开始引入的对C语言的扩展,实现匿名函数的特性,Block是一种特殊的数据类型,其可以正常定义变量、作为参数、作为返回值,特殊的,block还可以保存一段代码,在需要的时候调用 ......
1. Block 1.1 什么是Block

  之前都是对block的简单实用,这里重新了解下。

  代码块Block是苹果在iOS4开始引入的对C语言的扩展,实现匿名函数的特性,Block是一种特殊的数据类型,其可以正常定义变量、作为参数、作为返回值,特殊的,block还可以保存一段代码,在需要的时候调用,目前Block广泛的应用iOS开发中,常用于GCD、动画、排序及各类回调。

  注:Block的声明与赋值只是保存了一段代码段,必须调用才能执行内部的代码。  

1.2 Block简单的使用

Block的声明:

Block变量的声明格式为: 返回值类型(^Block名字)(参数列表);

// 声明一个无返回值,参数为两个字符串对象,叫做aBlock的Block
void(^aBlock)(NSString *x, NSString *y);

// 形参变量名称可以省略,只留有变量类型即可
void(^aBlock)(NSString *, NSString *);

 Block的赋值:

Block变量的赋值格式为: Block变量 = ^(参数列表){函数体};

aBlock = ^(NSString *x, NSString *y){
    NSLog(@"%@ love %@", x, y);
};

Block声明并赋值:

int(^myBlock)(int) = ^(int num){
    return num * 7;
};

// 如果没有参数列表,在赋值时参数列表可以省略
void(^aVoidBlock)() = ^{
    NSLog(@"I am a aVoidBlock");
};

Block 变量的调用;

// 调用后控制台输出"Li Lei love Han Meimei"
aBlock(@"Li Lei",@"Han Meimei");

// 调用后控制台输出"result = 63"
NSLog(@"result = %d", myBlock(9));

// 调用后控制台输出"I am a aVoidBlock"
aVoidBlock();
2. Block 数据结构 2.1 Block 数据结构简单认识

block的数据结构定义如下:

iOS - Block

对应的结构体定义如下:

struct Block_descriptor {
    unsigned long int reserved;
    unsigned long int size;
    void (*copy)(void *dst, void *src);
    void (*dispose)(void *);
};
struct Block_layout {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(void *, ...);
    struct Block_descriptor *descriptor;
    /* Imported variables. */
};

 通过上面我们可以知道,一个block实例实际上由6部分构成:

isa 指针,所有对象都有该指针,用于实现对象相关的功能。 flags,用于按bit位表示一些block的附加信息,本文后面介绍 block copy 的实现代码可以看到对该变量的使用 reserved 保留变量 invoke 函数指针,指向具体的block 实现的函数调用地址 descriptor 表示该block的附加描述信息,主要是size大小,以及 copy 和 dispose 函数的指针。 variables , capture 过来的变量,block能够访问它外部的局部变量,就是因为将这些变量(或变量的地址)复制到了结构体中。

在 OC 语言中,一共有 3 种类型的 block:

_NSConcreteGlobalBlock 全局的静态 block,不会访问任何外部变量。 _NSConcreteStackBlock 保存在栈中的 block,当函数返回时会被销毁 _NSConcreteMallocBlock 保存在堆中的 block,当引用计数为 0 时会被销毁。

遇到一个Block,我们怎么确定这个Block的存储位置呢?

a。Block不访问外界变量(包括栈中和堆中的变量)

Block既不在栈又不在堆中,在代码段中,ARC和MRC都是如此,此时为全局块。

b。Block访问外界变量

MRC 环境下:访问外界变量的Block默认存储在栈中。

ARC 环境下:访问外界变量的Block默认存储在堆中(实际是放在栈区,然后ARC情况下自动又拷贝到堆区),自动释放。

2.2 NSConcreteGlobalBlock 类型的 block 的实现

我们可以新建一个block1.c文件:

#include <stdio.h>
int main()
{
    ^{ printf("Hello, World!\n"); } ();
    return 0;
}

 在终端输入 clang -rewrite-objc block1.c ,就可以在目录中看到 clang 输出了一个 block1.cpp 的文件,这个文件就是 block 在 C 语言的实现:

struct __block_impl {
    void *isa;
    int Flags;
    int Reserved;
    void *FuncPtr;
};
struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    printf("Hello, World!\n");
}
static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0) };
int main()
{
    (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA) ();
    return 0;
}
  一个block实际就是一个对象,它主要由一个 isa 和一个 impl 和一个 descriptor 组成。 这里我们看到 isa 指向的还是 _NSConcreteStackBlock,但在 LLVM 的实现中,开启 ARC 时,block 应该是 _NSConcreteGlobalBlock 类型。感觉是当一个 block 被声明的时候,它都是一个 _NSConcreteStackBlock类的对象。 impl 是实际的函数指针,本例中,它指向 _main_block_func_0。这里的 impl 相当于之前提到的 invoke 变量,只是 clang 编译器对变量的命名不一样。 descriptor 是用于描述当前这个 block 的附加信息的,包括结构体的大小,需要 捕获 和 处理 的变量列表等。结构体大小需要保存是因为,每个 block 因为会 捕获 一些变量,这些变量会加到 __main_block_impl_0 这个结构体中,让其体积变大。后面会看到相关代码。 2.3 NSConcreteStackBlock 类型的 block 的实现

我们另外新建一个名为 block2.c 的文件,输入一下内容:

#include <stdio.h>
int main() {
    int a = 100;
    void (^block2)(void) = ^{
        printf("%d\n", a);
    };
    block2();
    return 0;
}

 再次使用 clang 工具,转换后的关键代码如下:

struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    int a;
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    int a = __cself->a; // bound by copy
    printf("%d\n", a);
}
static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main()
{
    int a = 100;
    void (*block2)(void) = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a);
    ((void (*)(__block_impl *))((__block_impl *)block2)->FuncPtr)((__block_impl *)block2);
    return 0;
}

  在本例中,我们可以看到:

本例中,isa 指向 _NSConcreteStackBlock,说明这是一个分配在栈上的实例。 main_block_impl_0 中增加了一个变量a,在block中引用的变量a实际上是在申明block时,被复制到 main_block_impl_0 结构体中的那个变量a。y因为这样,我们就能理解,在block内部修改变量a的内容,不会影响外部的实际变量a。 main_block_impl_0 中由于增加了一个变量a,所以结构体的大小变了,该结构体大小被写在了 main_block_desc_0 中。

我们修改上面的代码,在变量前面增加 __block 关键字:

#include <stdio.h>
int main()
{
    __block int i = 1024;
    void (^block1)(void) = ^{
        printf("%d\n", i);
        i = 1023;
    };
    block1();
    return 0;
}

  生成的关键代码如下,可以看到,差异很大:

struct __Block_byref_i_0 {
    void *__isa;
    __Block_byref_i_0 *__forwarding;
    int __flags;
    int __size;
    int i;
};
struct __main_block_impl_0 {
    struct __block_impl impl;
    struct __main_block_desc_0* Desc;
    __Block_byref_i_0 *i; // by ref
    __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_i_0 *_i, int flags=0) : i(_i->__forwarding) {
        impl.isa = &_NSConcreteStackBlock;
        impl.Flags = flags;
        impl.FuncPtr = fp;
        Desc = desc;
    }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
    __Block_byref_i_0 *i = __cself->i; // bound by ref
    printf("%d\n", (i->__forwarding->i));
    (i->__forwarding->i) = 1023;
}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->i, (void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __main_block_desc_0 {
    size_t reserved;
    size_t Block_size;
    void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
    void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main()
{
    __attribute__((__blocks__(byref))) __Block_byref_i_0 i = {(void*)0,(__Block_byref_i_0 *)&i, 0, sizeof(__Block_byref_i_0), 1024};
    void (*block1)(void) = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_i_0 *)&i, 570425344);
    ((void (*)(__block_impl *))((__block_impl *)block1)->FuncPtr)((__block_impl *)block1);
    return 0;
}

  从代码中我们可以看到:

源码中增加一个名为 __block_byref_i_0 的结构体,用来保存我们要 捕获 并且修改的变量 i。 main_block_impl_0 引用的是 Block_byref_i_0 的结构体指针,这样就可以达到修改外部变量的作用。 __Block_byref_i_0 结构体中带有 isa,说明它也是一个对象。 我们需要负责 Block_byref_i_0 结构体相关的内存管理,所以 main_block_desc_0 中增加了 copy 和 dispose 函数指针,对于在调用前后修改响应变量的引用计数。

为什么使用__block 修饰的外部变量的值就可以被block修改呢?

我们发现一个局部变量加上 __block 修饰符后竟然跟block一样变成了一个__Block_byref_i_0结构体类型的自动变量实例。此时我们在block内部访问 i 变量则需要通过一个叫 __forwarding 的成员变量来间接访问 i 变量。

__block 变量和 __forwarding

在copy操作之后,既然__block变量也被copy到堆上去了,那么访问该变量是访问栈上还是堆上的呢?

iOS - Block

通过__forwarding, 无论是在block中还是 block外访问__block变量, 也不管该变量在栈上或堆上, 都能顺利地访问同一个__block变量。

2.3 NSConcreteMallocBlock 类型的 block 的实现

NSConcreteMallocBlock 类型的 block 通常不会在源码中直接出现,因为默认它是当一个 block 被 copy 的时候,才会将这个 block 赋值到堆中。以下是一个 block 被copy 时的示例代码,可以看到,在第8步,目标的 block 类型被修改为 _NSConcreteMallocBlock。

static void *_Block_copy_internal(const void *arg, const int flags) {
    struct Block_layout *aBlock;
    const bool wantsOne = (WANTS_ONE & flags) == WANTS_ONE;
    // 1
    if (!arg) return NULL;
    // 2
    aBlock = (struct Block_layout *)arg;
    // 3
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    // 4
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }
    // 5
    struct Block_layout *result = malloc(aBlock->descriptor->size);
    if (!result) return (void *)0;
    // 6
    memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
    // 7
    result->flags &= ~(BLOCK_REFCOUNT_MASK);    // XXX not needed
    result->flags |= BLOCK_NEEDS_FREE | 1;
    // 8
    result->isa = _NSConcreteMallocBlock;
    // 9
    if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
        (*aBlock->descriptor->copy)(result, aBlock); // do fixup
    }
    return result;
}
3. 变量的复制

对于 block 外的变量引用,block默认是将其复制到其数据结构中来实现访问的,也就是说block的自动变量只针对block内部使用的自动变量,不使用则不截获,因为截获的自动变量会存储于block的结构体内部,会导致block体积变大,默认情况下 block 只能访问不能修改局部变量的值,如下图所示:

iOS - Block

对于 __block 修饰的外部变量引用,block 是复制其引用地址来实现访问的,block可以修改__block 修饰的外部变量的值,如下图所示:

iOS - Block

 

4. ARC 对 block 类型的影响

在 ARC 开启的情况下,将只会有 NSConcreteGlobalBlock 和 NSConcreteMallocBlock 类型的 block。

原本的 NSConcreteStackBlock 的 block 会被 NSConcreteMallocBlock 类型的 block替代。证明方式是以下代码再 XCode 中,会输出 <__NSMallocBlock__: 0x100109960>。

在苹果的官方文档中也提到,当把栈中的block返回时,不需要调用 copy 方法了。

#import <Foundation/Foundation.h>
int main(int argc, const char * argv[])
{
    @autoreleasepool {
        int i = 1024;
        void (^block1)(void) = ^{
            printf("%d\n", i);
        };
        block1();
        NSLog(@"%@", block1);
    }
    return 0;
}

 ARC下,访问外界变量的 Block 为什么要从栈区拷贝到堆区呢?

栈上的Block,如果其所属的变量作用域结束,该Block就被废弃,如同一般的自动变量。当然,Block中的__block变量也同时被废弃:

iOS - Block


为了解决栈块在其变量作用域结束之后被废弃(释放)的问题,我们需要把Block复制到堆中,延长其生命周期。开启ARC时,大多数情况下编译器会恰当地进行判断是否有需要将Block从栈复制到堆,如果有,自动生成将Block从栈上复制到堆上的代码。Block的复制操作执行的是copy实例方法。Block只要调用了copy方法,栈块就会变成堆块。

如下图:

iOS - Block

5. 链式语法的实现

  类似于第三方自动布局 Masonry 的代码:

[view1 mas_makeConstraints:^(MASConstraintMaker *make) {
    make.top.equalTo(superview.mas_top).with.offset(padding.top);
    make.left.equalTo(superview.mas_left).with.offset(padding.left);
    make.bottom.equalTo(superview.mas_bottom).with.offset(-padding.bottom);
    make.right.equalTo(superview.mas_right).with.offset(-padding.right);
}];
5.1 如何实现

我们举个例子,假如对于一个已有类的实例 classInstance,现在要用句点 . 和小括号 () 的方式连续调用它的"方法" method1,method2,method3,如下图所示:

iOS - Block

从图中我们可以知道,要实现链式语法,主要包含 点语法、小括号调用、连续访问 三部分:

点语法:在OC中,对于点语法的使用,最常见于属性的访问,比如对在方法内部调用 self.xxx,在类的实例中用 classInstance.xxx; 小括号调用:OC中一般用中括号 [] 来实现方法的调用,而对于 Block 的调用则还是保留使用小括号 ( ) 的方式,因此我们可以考虑用 Block来实现链式语法中的 (); 如何实现连续访问?:Block可以理解为带有自动变量的匿名函数或函数指针,它也是有返回值的。我们可以把上述类实例每次方法的调用(实质为 Block 的调用)的返回值都设为当前类实例本身,即 classInstance.method1() 返回了当前 classInstance ,此时才能在其后面继续执行 .method2() 的调用,以此类推。

总结一句话:我们可以定义类的一些只读 Block 类型的属性,并把这些 Block 的返回值类型设置为当前类本身,然后实现这些 Block 属性的 getter 方法。

下面是一个Demo,链式计算器的例子,可以连续地调用计算器的加减乘除进行计算:

@interface Cacluator : NSObject

@property (assign, nonatomic) NSInteger result;

// 下面分别定义加减乘除四个只读block类型的属性
// 设置为只读是为了限制只需要实现 getter方法
// 这里每个 Block 类型的属性携带一个 NSInteger 类型的参数,返回参数是当前类型
@property (copy, nonatomic, readonly) Cacluator *(^add)(NSInteger number);
@property (copy, nonatomic, readonly) Cacluator *(^minus)(NSInteger number);
@property (copy, nonatomic, readonly) Cacluator *(^multiply)(NSInteger number);
@property (copy, nonatomic, readonly) Cacluator *(^divide)(NSInteger number);

@end


@implementation Cacluator

// 此处为 add 属性的 getter方法实现
// 前面声明 add 属性的类型为 block 类型,所以此处 getter 返回一个 block
// 对于返回的 block,返回值类型为 Calculator,所以返回self

-(Cacluator *(^)(NSInteger))add{
    return ^id(NSInteger num){
        self.result += num;
        return self;
    };
}

-(Cacluator *(^)(NSInteger))minus{
    return ^id(NSInteger num){
        self.result -= num;
        return self;
    };
}

-(Cacluator *(^)(NSInteger))multiply{
    return ^id(NSInteger num){
        self.result *= num;
        return self;
    };
}

-(Cacluator *(^)(NSInteger))divide{
    return ^id(NSInteger num){
        NSAssert(num != 0, @"除数不能为0");
        self.result /= num;
        return self;
    };
}

@end

 测试代码:

Calculator *calc = [[Calculator alloc] init]; // 初始化一个计算器类实例

calc.add(8).minus(4).multiply(6).divide(3); // 链式调用

NSLog(@"%d", (int)calc.result); // 输出 8

 分析:

上面 calc.add 访问 calc 的 add 属性会调用 [calc add] 方法,此方法会返回一个Block如下:

^id(NSInteger num){
      self.result += num;
      return self;  
};

在这个Block中,前面已声明其返回值类型为:Caculator,所以在其里面返回了 self,这样当调用该 Block 时,会返回 self (实例本身),流程如下:

1.calc.add 获得一个 Block
2.calc.add(8) Block 的执行,并返回了 self (即实例 calc)
3.于是在 calc.add(8) 后面可继续访问 calc 的其他属性,一路点下去
 5.2 更简洁的实现

上面是通过先声明一系列的Block属性, 再去实现Block属性的getter 方法来实现链式调用,感觉还是有点麻烦,我们去看看是否有更简洁的实现方式:

iOS - Block

点语法的本质:

在OC中,点语法实际上只是一种替换手段,对于属性的getter方法,class.xxx 的写法最终会被编译器替换成 [class xxx];对于setter 方法,即把 class.xxx 写在等号左边,class.xxx = value 会被转换成 [class setXxx:value],本质都是方法调用 即使再class中并没有显式声明 xxx 属性,在编译代码时,代码中如果有 class.xxx 的写法也会被替换成 [class xxx],所以只要在class中有一个声明为 xxx 的方法,即可在代码中其它地方写 class.xxx

所以,解决方案是:

  在定义类的头文件的@interface中,直接声明某一方法名为xxx,该方法的返回值是一个Block,而此block的返回值设为该类本身。

@interface Calculator : NSObject

@property (nonatomic, assign) NSInteger result; // 保存计算结果

// 上面的属性声明其实是可以省略的,只要声明下面方法即可;
// 在 Objective-C 中,点语法只是一种替换手段,class.xxx 的写法(写在等号左边除外)最终会被编译器替换成 [class xxx],本质上是方法调用;

// add、minus、multiply、divide 四个方法都会返回一个 Block,
// 这个 Block 有一个 NSInteger 类型的参数,并且其返回值类型为当前 Calculator 类型;
// 下面四个方法的实现与上面 Calculator.m 中的一致。
- (Calculator * (^)(NSInteger num)) add;
- (Calculator * (^)(NSInteger num)) minus;
- (Calculator * (^)(NSInteger num)) multiply;
- (Calculator * (^)(NSInteger num)) divide;

 Masonry 也是这么做的,只声明了方法,并没有声明相应的属性。另外,对于Masonry链式语法中的 .and、.with 等写法只是为了让代码读起来更通顺,实现方式为:声明一个名为 and 和 with 的方法,在方法里返回self:

- (MASConstraint *)with {
    return self;
}

- (MASConstraint *)and {
    return self;
}

 存在的问题:

当用点语法去访问类的某一个 Block 属性时,Block 后面的参数 Xcode

XXXHTTPManager *http = [XXXHTTPManager manager];

// 下面 .get(...) 里面的参数,Xcode 并不会提示自动补全,需要手动去填写,.success(...) .failure(...) 等也一样,
// 这里不能像传统中括号 [] 方法调用那样,输入方法名就可以自动提示该方法所有的参数并按回车自动补全。
http.get(@"https://kangzubin.cn", nil).success(^(NSURLSessionDataTask *task, id responseObject) {
    // Success TODO
}).failure(^(NSURLSessionDataTask *task, NSError *error) {
    // Failure TODO
}).resume();

 Xcode 中有个强大但未被充分利用的功能:Code Snippets(代码块)可以解决。

http://www.imlifengfeng.com/blog/?utm_medium=email&utm_source=gank.io&p=457