欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

机器学习经典算法-logistic回归代码详解

程序员文章站 2022-05-21 07:54:05
一、算法简要 我们希望有这么一种函数:接受输入然后预测出类别,这样用于分类。这里,用到了数学中的sigmoid函数,sigmoid函数的具体表达式和函数图象如下:...

一、算法简要

我们希望有这么一种函数:接受输入然后预测出类别,这样用于分类。这里,用到了数学中的sigmoid函数,sigmoid函数的具体表达式和函数图象如下:

机器学习经典算法-logistic回归代码详解

可以较为清楚的看到,当输入的x小于0时,函数值<0.5,将分类预测为0;当输入的x大于0时,函数值>0.5,将分类预测为1。

1.1 预测函数的表示

机器学习经典算法-logistic回归代码详解

1.2参数的求解

机器学习经典算法-logistic回归代码详解

二、代码实现

函数sigmoid计算相应的函数值;gradAscent实现的batch-梯度上升,意思就是在每次迭代中所有数据集都考虑到了;而stoGradAscent0中,则是将数据集中的示例都比那里了一遍,复杂度大大降低;stoGradAscent1则是对随机梯度上升的改进,具体变化是alpha每次变化的频率是变化的,而且每次更新参数用到的示例都是随机选取的。

from numpy import * 
import matplotlib.pyplot as plt 
def loadDataSet(): 
  dataMat = [] 
  labelMat = [] 
  fr = open('testSet.txt') 
  for line in fr.readlines(): 
    lineArr = line.strip('\n').split('\t') 
    dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) 
    labelMat.append(int(lineArr[2])) 
  fr.close() 
  return dataMat, labelMat 
def sigmoid(inX): 
  return 1.0/(1+exp(-inX)) 
def gradAscent(dataMatIn, classLabels): 
  dataMatrix = mat(dataMatIn) 
  labelMat = mat(classLabels).transpose() 
  m,n=shape(dataMatrix) 
  alpha = 0.001 
  maxCycles = 500 
  weights = ones((n,1)) 
  errors=[] 
  for k in range(maxCycles): 
    h = sigmoid(dataMatrix*weights) 
    error = labelMat - h 
    errors.append(sum(error)) 
    weights = weights + alpha*dataMatrix.transpose()*error 
  return weights, errors 
def stoGradAscent0(dataMatIn, classLabels): 
  m,n=shape(dataMatIn) 
  alpha = 0.01 
  weights = ones(n) 
  for i in range(m): 
    h = sigmoid(sum(dataMatIn[i]*weights)) 
    error = classLabels[i] - h  
    weights = weights + alpha*error*dataMatIn[i] 
  return weights 
def stoGradAscent1(dataMatrix, classLabels, numIter = 150): 
  m,n=shape(dataMatrix) 
  weights = ones(n) 
  for j in range(numIter): 
    dataIndex=range(m) 
    for i in range(m): 
      alpha= 4/(1.0+j+i)+0.01 
      randIndex = int(random.uniform(0,len(dataIndex))) 
      h = sigmoid(sum(dataMatrix[randIndex]*weights)) 
      error = classLabels[randIndex]-h 
      weights=weights+alpha*error*dataMatrix[randIndex] 
      del(dataIndex[randIndex]) 
    return weights 
def plotError(errs): 
  k = len(errs) 
  x = range(1,k+1) 
  plt.plot(x,errs,'g--') 
  plt.show() 
def plotBestFit(wei): 
  weights = wei.getA() 
  dataMat, labelMat = loadDataSet() 
  dataArr = array(dataMat) 
  n = shape(dataArr)[0] 
  xcord1=[] 
  ycord1=[] 
  xcord2=[] 
  ycord2=[] 
  for i in range(n):  
    if int(labelMat[i])==1: 
      xcord1.append(dataArr[i,1]) 
      ycord1.append(dataArr[i,2]) 
    else: 
      xcord2.append(dataArr[i,1]) 
      ycord2.append(dataArr[i,2]) 
  fig = plt.figure() 
  ax = fig.add_subplot(111) 
  ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') 
  ax.scatter(xcord2, ycord2, s=30, c='green') 
  x = arange(-3.0,3.0,0.1) 
  y=(-weights[0]-weights[1]*x)/weights[2] 
  ax.plot(x,y) 
  plt.xlabel('x1') 
  plt.ylabel('x2') 
  plt.show() 
def classifyVector(inX, weights): 
  prob = sigmoid(sum(inX*weights)) 
  if prob>0.5: 
    return 1.0 
  else: 
    return 0 
def colicTest(ftr, fte, numIter): 
  frTrain = open(ftr) 
  frTest = open(fte) 
  trainingSet=[] 
  trainingLabels=[] 
  for line in frTrain.readlines(): 
    currLine = line.strip('\n').split('\t') 
    lineArr=[] 
    for i in range(21): 
      lineArr.append(float(currLine[i])) 
    trainingSet.append(lineArr) 
    trainingLabels.append(float(currLine[21])) 
  frTrain.close() 
  trainWeights = stoGradAscent1(array(trainingSet),trainingLabels, numIter) 
  errorCount = 0 
  numTestVec = 0.0 
  for line in frTest.readlines(): 
    numTestVec += 1.0 
    currLine = line.strip('\n').split('\t') 
    lineArr=[] 
    for i in range(21): 
      lineArr.append(float(currLine[i])) 
    if int(classifyVector(array(lineArr), trainWeights))!=int(currLine[21]): 
      errorCount += 1 
  frTest.close() 
  errorRate = (float(errorCount))/numTestVec 
  return errorRate 
def multiTest(ftr, fte, numT, numIter): 
  errors=[] 
  for k in range(numT): 
    error = colicTest(ftr, fte, numIter) 
    errors.append(error) 
  print "There "+str(len(errors))+" test with "+str(numIter)+" interations in all!" 
  for i in range(numT): 
    print "The "+str(i+1)+"th"+" testError is:"+str(errors[i]) 
  print "Average testError: ", float(sum(errors))/len(errors) 
''''' 
data, labels = loadDataSet() 
weights0 = stoGradAscent0(array(data), labels) 
weights,errors = gradAscent(data, labels) 
weights1= stoGradAscent1(array(data), labels, 500) 
print weights 
plotBestFit(weights) 
print weights0 
weights00 = [] 
for w in weights0: 
  weights00.append([w]) 
plotBestFit(mat(weights00)) 
print weights1 
weights11=[] 
for w in weights1: 
  weights11.append([w]) 
plotBestFit(mat(weights11)) 
''' 
multiTest(r"horseColicTraining.txt",r"horseColicTest.txt",10,500) 

总结

以上就是本文关于机器学习经典算法-logistic回归代码详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python中实现k-means聚类算法详解

Python编程实现粒子群算法(PSO)详解

Python编程实现蚁群算法详解

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!