欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Opencv学习笔记 透视变换(perspective transform)

程序员文章站 2022-05-20 22:31:03
...

        拉伸、收缩、扭曲、旋转是图像的几何变换,在三维视觉技术中大量应用到这些变换,又分为仿射变换和透视变换。仿射变换通常用单应性建模,利用cvWarpAffine解决密集映射,用cvTransform解决稀疏映射。仿射变换可以将矩形转换成平行四边形,它可以将矩形的边压扁但必须保持边是平行的,也可以将矩形旋转或者按比例变化。透视变换提供了更大的灵活性,一个透视变换可以将矩阵转变成梯形。当然,平行四边形也是梯形,所以仿射变换是透视变换的子集。

        opencv中的函数主要是:

        对图像进行透视变换

        void cvWarpPerspective( const CvArr* src, CvArr* dst,const CvMat* map_matrix,

                       int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fillval=cvScalarAll(0) );

        由四对点计算透射变换

        CvMat* cvGetPerspectiveTransform( const CvPoint2D32f*src, const CvPoint2D32f* dst, CvMat*map_matrix );

        透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。如图1,通过透视变换ABC变换到A'B'C'。

Opencv学习笔记 透视变换(perspective transform)

        参考代码如下:

# 透视变换
# import the necessary packages
import numpy as np
import argparse
import cv2
def order_points(pts):
	# initialzie a list of coordinates that will be ordered
	# such that the first entry in the list is the top-left,
	# the second entry is the top-right, the third is the
	# bottom-right, and the fourth is the bottom-left
	rect = np.zeros((4, 2), dtype = "float32")
	# the top-left point will have the smallest sum, whereas
	# the bottom-right point will have the largest sum
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]
	# now, compute the difference between the points, the
	# top-right point will have the smallest difference,
	# whereas the bottom-left will have the largest difference
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]
	# return the ordered coordinates
	return rect

def four_point_transform(image, pts):
	# obtain a consistent order of the points and unpack them
	# individually
	rect = order_points(pts)
	(tl, tr, br, bl) = rect
	# compute the width of the new image, which will be the
	# maximum distance between bottom-right and bottom-left
	# x-coordiates or the top-right and top-left x-coordinates
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
	maxWidth = max(int(widthA), int(widthB))
	# compute the height of the new image, which will be the
	# maximum distance between the top-right and bottom-right
	# y-coordinates or the top-left and bottom-left y-coordinates
	heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
	heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
	maxHeight = max(int(heightA), int(heightB))
	# now that we have the dimensions of the new image, construct
	# the set of destination points to obtain a "birds eye view",
	# (i.e. top-down view) of the image, again specifying points
	# in the top-left, top-right, bottom-right, and bottom-left
	# order
	dst = np.array([
		[0, 0],
		[maxWidth - 1, 0],
		[maxWidth - 1, maxHeight - 1],
		[0, maxHeight - 1]], dtype = "float32")
	# compute the perspective transform matrix and then apply it
	M = cv2.getPerspectiveTransform(rect, dst)
	warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
	# return the warped image
	return warped


# load the image and grab the source coordinates (i.e. the list of
# of (x, y) points)
# NOTE: using the 'eval' function is bad form, but for this example
# let's just roll with it -- in future posts I'll show you how to
# automatically determine the coordinates without pre-supplying them
image = cv2.imread("C:/Users/zyh/Desktop/20201004114816.png")
pts = np.array([[73, 239], [356, 117], [475, 265], [187, 443]], dtype = "float32")
# apply the four point tranform to obtain a "birds eye view" of
# the image
warped = four_point_transform(image, pts)
# show the original and warped images
cv2.imshow("Original", image)
cv2.imshow("Warped", warped)
cv2.waitKey(0)

 

Opencv学习笔记 透视变换(perspective transform)
原图
Opencv学习笔记 透视变换(perspective transform)
变换后的图

 

        参考如下: 

        https://blog.csdn.net/weixin_41676170/article/details/82848076

        https://www.pianshen.com/article/399876939/