JS深度优先遍历和广度优先遍历
程序员文章站
2022-05-20 20:23:12
...
JS深度优先遍历和广度优先遍历
深度优先遍历 (DFS)
Depth First Search
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
递归实现深度遍历
通过递归实现深度优先遍历
let depth1 = (node, nodeList = []) => {
//node不能为null
if (node !== null) {
nodeList.push(node)
let children = node.children || []
//如果children.length存在
for (let i = 0; i < children.length; i++) {
//递归调用
depth1(children[i], nodeList)
}
}
return nodeList
}
// obj
let obj = {
children: [{
index: 0,
children: [{
index: 1,
children: [{
index: 3
}]
}]
}, {
index: 4
}, {
index: 5,
children: [{
index: 7,
children: [{
index: 8
}]
}]
}, {
index: 6
}]
}
depth1(obj)
(9) [{…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}]
0: {children: Array(4)}
1: {index: 0, children: Array(1)}
2: {index: 1, children: Array(1)}
3: {index: 3}
4: {index: 4}
5: {index: 5, children: Array(1)}
6: {index: 7, children: Array(1)}
7: {index: 8}
8: {index: 6}
length: 9
非递归实现
let deepTraversal3 = (node) => {
let stack = []
let nodes = []
if (node) {
stack.push(node)
while (stack.length) {
//每次取最后一个
let item = stack.pop()
let children = item.children || []
nodes.push(item)
//判断children的长度
for (let i = children.length - 1; i >= 0; i--) {
stack.push(children[i])
}
}
}
return nodes
}
广度优先遍历(BFS)
Breadth First Search
宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。
JS实现
let breadth = (node) => {
let nodes = []
let stack = []
if (node) {
stack.push(node)
while (stack.length) {
//取第一个
let item = stack.shift()
let children = item.children || []
nodes.push(item)
for (let i = 0; i < children.length; i++) {
stack.push(children[i])
}
}
}
return nodes
}
breadth(obj)
(9) [{…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}, {…}]
0: {children: Array(4)}
1: {index: 0, children: Array(1)}
2: {index: 4}
3: {index: 5, children: Array(1)}
4: {index: 6}
5: {index: 1, children: Array(1)}
6: {index: 7, children: Array(1)}
7: {index: 3}
8: {index: 8}
length: 9
上一篇: #144.二叉树的前序遍历
下一篇: 144. 二叉树的前序遍历