欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【赛后补题】(HDU6228) Tree {2017-ACM/ICPC Shenyang Onsite}

程序员文章站 2022-05-19 20:58:29
...

这条题目当时卡了我们半天,于是成功打铁……今天回来一看,mmp,贪心思想怎么这么弱智。。。。。(怪不得场上那么多人A了

题意分析

这里是原题:

Tree

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)

Problem Description
Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem.
Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty.
Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.

Input
The first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases.
For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree.
The summation of n in input is smaller than or equal to 200000.

Output
For each test case, output the maximum size of E1 ∩ E1 … ∩ Ek.

Sample Input
3
4 2
1 2
2 3
3 4
4 2
1 2
1 3
1 4
6 3
1 2
2 3
3 4
3 5
6 2

Sample Output
1
0
1

题意很简单,我们考虑一下做法。
要想交集尽可能大,颜色各自的分布应该尽可能“往顶层和底层分布”——这是贪心思想。然后具体怎么实现?很简单,对每一个点i,设它的子树的节点(包括它自身)有p个,那么只需要检查pknpk即可。不需要查边,只需要查点,因为只要存在这样的点,那么一定存在这样的一条公共边。
实现查子树可以用dfs遍历一遍即可实现。

代码

#include <bits/stdc++.h>

using namespace std;
#define NQUICKIO
#define NFILE

struct Edge
{
    int u,v;
    Edge(int _u,int _v):u(_u),v(_v) {}
};
const int maxnode=200005;
vector<Edge> edges;
vector<int> G[maxnode];
int s[maxnode];
void addEdge(int u,int v)
{
    edges.push_back(Edge(u,v));
    G[u].push_back((int)edges.size()-1);
    return;
}

int dfs(int f,int p)
{
    //cout<<"now point:"<<p<<endl;
    int nowsum=1;
    for(int i=0;i!=(int)G[p].size();++i)
        if(edges[G[p][i]].v!=f)
            nowsum+=dfs(p,edges[G[p][i]].v);
    return s[p]=nowsum;
}

int main()
{
#ifdef QUICKIO
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
#endif
#ifdef FILE
    freopen("datain.txt","r",stdin);
    freopen("dataout.txt","w",stdout);
#endif
    int T; cin>>T;
    while(T--)
    {
        edges.clear();
        int n,k; cin>>n>>k;
        for(int i=1;i<=n;++i) G[i].clear();
        memset(s,0,sizeof(s));
        for(int i=1;i!=n;++i)
        {
            int tu,tv; cin>>tu>>tv;
            addEdge(tu,tv);
            addEdge(tv,tu);
        }
        dfs(-1,edges[0].u);
        int ans=0;
        /*for(int i=1;i<=n;++i)
            cout<<s[i]<<" ";
            cout<<endl;*/
        for(int i=1;i<=n;++i)
        {
            if(s[i]>=k && n-s[i]>=k) ans++;
        }
        cout<<ans<<endl;
    }
    return 0;
}