欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

SICP学习笔记之一迭代与递归(1)

程序员文章站 2022-05-19 17:48:39
...

SICP学习笔记之一迭代与递归(1)

 

最近开始学学习《SICP(计算机程序的构造和解释)》,不愧是当年MIT的教材,全本书都是干货,每个章节的每个小节都值得认真推敲,仔细思考,自我感觉收获很大。因此我把自己的学习过程通过系列博客分享给大家,望多多交流。

 

递归与迭代,是计算机算法的重要组成部分,我们都懂得简单的二叉树遍历与二分查找,但是很少有人深入思考二者之间的异同以及关系。这第一篇博客,就跟大家分享一下自己关于递归与迭代的思考。

 

1 线性递归与迭代

栗一 阶乘的计算

对于阶乘的计算,相信大家都不陌生,考虑到阶乘的定义:

n! = n*(n-1)*(n-2)*…*2*1

我们可以有很多种方式计算,最简单的就是一个递归算法了,即n!= n*(n-1)!

对应的代码也很简单,我就不多讲了,在此,给出Lisp与Python两种语言的示例:

 

;用来递归计算阶乘的方法
(define (recursion_fun num)
  (if (> num 0)
      (* num (recursion_fun (- num 1)))
      1))

 

 

 

#用递归计算阶乘的方法
def  factorial_recursion(n):
         if n == 1:
                   return 1
         else:
                   return n*factorial_recursion(n-1)

 

 

以6!的计算为例,其计算过程展开如图1所示:


SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
 

 

图1  计算6!的线性递归过程

 

注意到上述计算过程的“形状”,因为其过程只有“一条线”,因此被形象地称为线性递归

 

其实,对于这种线性递归,我们可以很容易地改为迭代算法。对于阶乘的计算,我们可以换一个角度描述:先将1与2相乘,将得到的结果乘以3,然后再乘以4,这样一直乘到n。而在这个过程中,我们实际上一直在维护着一个中间结果,让它像“滚雪球”一样越乘越大,每一步都只是求一个乘积而已,因此我们完全可以用迭代算法重写我们的程序:

 

;用迭代计算阶乘的方法
(define (iteration_fun middle_result num maxnum)
  (if (> num maxnum)
      middle_result
      (iteration_fun (* middle_result num)
                     (+ num 1)
                     maxnum))
  )
;计算阶乘的方法
(define (factorial num)
  (iteration_fun 1 1 num))

 

 

 

#用迭代计算阶乘的方法
def factorial(n):
         factorial_iteration(1, 1, n)
def factorial_iteration(middle_result, n, max):
         if n > max:
                   return middle_result
         else:
                   return n*factorial_iteration(middle_result, n+1, max)

 

 

 

在这里,我们同样以6!的计算为例,分析一下这里的计算过程:


SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
 

 

图2  计算6!的迭代过程

 

对比一下两个过程,二者都需要与n成正比的步骤完成计算,即O(n)的时间复杂度,然而,如果考虑到两者的“形状”,二者情况就大不相同了:

在第一个过程中,显示的是一种先展开后收缩的形状,即函数层层调用但因为无法得到返回值而延迟执行,直到最后一层才得到返回值,进而层层“收缩”的到的最终结果。因此,在过程中我们不得不保存所有的延迟执行的函数 “链条”,直到得到返回值才层层回归释放这长长的链条,“递归”这个词本身就是对这一过程的形象概括。

而在第二个过程中,没有任何的展开与收缩。每步运算中,需要的只是middle_result,num和maxnum这3个变量,只要得到这三个值,函数就能马上得到下一步的结果,不存在延迟执行。可以说,无论计算了几步,3个变量都保存了至今为止所有计算的成果,不需额外保存一条“链条”。

 

分析到这里,我想大家对于迭代和递归各自的特点已经有一定认识了:首先,由于要在过程中额外保存延迟执行的函数链,递归算法的空间复杂度,即内存占用,通常高于迭代算法,在本例中,递归算法为O(n),迭代算法为O(1);其次,由于存在延迟执行,递归算法的灵活性显然不如递归算法,比如,在迭代算法中,我们可以在它执行任意步时暂停,并在需要时随时继续我们的运算(只要我们正确保存了3个变量当前的值)。而递归算法则很难完成这一点,因为他的计算过程需要保存的东西太多。

试想一下,如果有一项大型运算任务,可能耗时数日甚至数月,在如此长的时间跨度中,如果出现意外,比如最容易想到也最可怕的停电,对于迭代算法来说,受到的影响可能很小,因为每步运算后只需保存不太多的结果即可保证下一步运算继续,因此只要定时把计算结果保存到硬盘中,就可以保住运算成果,需要时“存档读档”就可以继续运算;而对于递归算法,这种变故就可能是灾难性的: 递归时的“延迟函数链”通常需要存在内存中(备份到硬盘可是很耗资源的,不现实),一旦有一环丢失运算都难以继续了,只能从头再来,而内存掉电不储存的特性恰恰使这种情况极易发生,因此从这个角度看,递归算法本身就是“十分脆弱”的。因此,我们有理由猜测,大型运算中迭代的应用一定比递归普遍。

好了,前面讲了这么多,大家不要误解,我没有丝毫贬低递归的意思,其实,相比于迭代,递归的优势也是很明显的,那就是易于描述和理解,这点对比一下上文中的代码行数就一目了然了。我的理解是,如果把问题比作迷宫,算法用来找到起点到终点的路径,那么递归法倾向于从终点向起点出发解决问题,这样通常只有一条路径到达起点,因此可以更快更容易地解决问题;而迭代算法则更像是从起点出发寻找终点,因此遇到的困难通常会更多些。

为了加深大家对于迭代与递归算法的理解,下面我再举几个栗子,揭示二者更多的特征。

 

2 树形递归与迭代

上面的阶乘计算的例子中,不论是递归还是迭代,其运算步骤都与n成线性增长,因此被称为线性递归与线性迭代。与之对应的还有树形递归,请看下面的栗子:

栗2  斐波那契(Fibonacci)数列的计算

斐波那契数列,其定义很简单,除前两项外,数列中的每一项都是前两项的和:

0,1,1,2,3,5,8,13,21…

写成函数形式为:

 
SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 

毫无疑问,这个数列用地递归算法的实现是很简单的:

 

;用递归计算斐波那契数列的方法
(define (fib_recursion n)
  (if (= n 0)
      0
      (if (= n 1)
          1
          (+ (fib_recursion (- n 1)) (fib_recursion (- n 2))))))

 

#递归法计算斐波那契数列的方法
def fib_recursion(n):
	if n == 0:
		return 0
	elif n == 1:
		return 1
	elif n > 1:
		return fib_recursion(n-1)+fib_recursion(n-2)

 

 

图3是以fib(5)的计算为例给出的算法计算过程:

 
SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
 图3 计算fib 5产生的树形递归过程

考虑这一过程,为了计算fib(5),我们需要计算fib(4)与fib(3),为了计算fib(4),又要计算fib(3)和fib(2),按照此规则,我们会发现其过程展开像一棵树,如图3所示,其中每层分裂为两个分支(除了最下面),反映了函数每层两次调用自身。

   

上面的过程,作为典型树形递归具有教育意义,但是作为计算斐波那契数列的方法,它做了太多的冗余计算——在这里,计算了2次fib(3),3次fib(2),5次fib(1)…想象一下,如果现在我们要计算fib 6,那么我们不光要再计算一遍fib(5),还得计算一遍fib(4),而后者显然相当于前者工作量的一半以上,也就是说,计算fib(6)的工作量至少是fib(5) 的1.5倍以上,这个算法的计算步数是随着n成指数增长的!

事实上,fib(n)是最接近SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列  <!--[endif]-->的整数(证明见附录),也就是说仅计算fib(100)所需要的计算次数就是6x10^20次,按照家用计算机200亿次/秒的运算速度(非官方数据),需要计算900多年,即使是我们全人类最快的“天河二号”超级计算机,也至少需要计算3小时才能完成。很显然,这个算法效率低的令人发指!

我们也可以提出一种计算斐波那契数列的的迭代过程,其基本思路就是将a和b赋予初值fib(1) = 1和fib(0) = 0,然后不断使用下面的变换规则:

SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 

 

这样,在应用n次这样的变换后,a和b将分别等于fib(n+1)和fib(n)。同样的,我们不难把它翻译成代码:

 

;用迭代计算斐波那契数列的方法
(define (fib n)
  (fib_iteration 1 0 n))

(define (fib_iteration a b count)
  (if (= count 0)
      b
      (fib_iteration (+ a b)
                           a
                           (- count 1))))

 

#迭代法计算斐波那契数列的方法
def fib(n):
	return fib_iteration(1,0,n)
def fib_iteration(a,b,n):
	if n == 0:
		return b
	else:
		return fib_iteration(a+b,a,n-1)

 

 

显然,此迭代算法计算抓住了斐波那契数列运算的本质,即fib(n+1)和fib(n)两个变量的“滚雪球”式变换,因此在中间结果中不光保存fib(n),还保存了fib(n+1)的值,从而避免了树形递归中出现的大量冗余计算,提高了效率。不难证明,迭代计算fib(100)只要100次加法即可,这是我们用铅笔就可以完成的任务;同时,整个过程也只需要3个变量的内存,不需要保存庞大的递归树。

 

 

       在本栗中,递归算法似乎又是完败,不过我们也不要小视递归算法这个“安静的美男子”,很多情况下,递归算法仍是给力的工具。下一篇博客,笔者就会举几个用递归方法容易解决而难以用迭代算法解决的栗子,展示递归算法的强大。大家拭目以待吧!

  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 7.4 KB
  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 45.3 KB
  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 2.2 KB
  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 17.5 KB
  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 1.1 KB
  • SICP学习笔记之一迭代与递归(1)
            
    
    博客分类: SICP学习笔记 迭代递归阶乘斐波那契数列 
  • 大小: 608 Bytes