pytorch+lstm实现电影情感分类
程序员文章站
2022-05-19 11:23:52
构建lstm模型,对样本进行训练和测试(...
构建lstm模型,对样本进行训练和测试(LSTM_Model.py)
"""
定义模型
"""
import torch
import torch.nn as nn
import lib
import torch.nn.functional as F
import torch.optim as optim
from dataset import get_dataloader
import os
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(lib.ws),embedding_dim=100)
self.lstm = nn.LSTM(input_size=100,hidden_size=lib.hidden_size,num_layers=lib.num_layers,
batch_first=True,bidirectional=True,dropout=lib.dropout)
self.fc1 = nn.Linear(lib.hidden_size * 2,64)
self.fc2 = nn.Linear(64,2)
def forward(self,input):
"""
:param input: 形状[batch_size,max_len],其中max_len表示每个句子有多少单词
:return:
"""
x = self.embedding(input) # 输出形状:[batch_size,seq_len,embedding_dim]
# 经过lstm层,x:[batch_size,max_len,2*hidden_size]
# h_n,c_n:[2*num_layers,batch_size,hidden_size]
x, (h_n,c_n) = self.lstm(x)
# 获取两个方向最后一次的output,进行concat
output_fw = h_n[-2,:,:] # 正向最后一次输出
output_bw = h_n[-1,:,:] # 反向最后一次输出
output = torch.cat([output_fw,output_bw],dim=-1)
out_fc1 = self.fc1(output)
out_relu = F.relu(out_fc1)
out = self.fc2(out_relu)
return F.log_softmax(out,dim=-1)
model = MyModel().to(lib.device)
optimizer = optim.Adam(model.parameters(),lr=0.01)
if os.path.exists("./model/model.pkl"):
model.load_state_dict(torch.load("./model/model.pkl"))
optimizer.load_state_dict(torch.load("./model/optimizer.pkl"))
def train(epoch):
data_loader = get_dataloader(True)
for idx, (input,target) in enumerate(data_loader):
# 梯度清零
optimizer.zero_grad()
# 看能不能用gpu
input = input.to(lib.device)
target = target.to(lib.device)
output = model(input)
loss = F.nll_loss(output,target)
print(epoch,idx,loss.item())
# 反向传播
loss.backward()
# 梯度更新
optimizer.step()
if idx % 100 == 0:
"""
pytorch有两种模型保存方式:
一、保存整个神经网络的的结构信息和模型参数信息,save的对象是网络net
二、只保存神经网络的训练模型参数,save的对象是net.state_dict()
"""
torch.save(model.state_dict(),"./model/model.pkl")
torch.save(optimizer.state_dict(),"./model/optimizer.pkl")
def evol():
loss_list = []
acc_list = []
test_loader = get_dataloader(False)
for idx,(input,target) in enumerate(test_loader):
input = input.to(lib.device)
target = target.to(lib.device)
# with torch.no_grad:
output = model(input)
cur_loss = F.nll_loss(output,target)
loss_list.append((cur_loss.cpu().item()))
# 计算准确率
pred = output.max(dim=-1)[1]
cur_acc = pred.eq(target).float().mean()
acc_list.append(cur_acc.cpu().item())
print("total loss,acc:",np.mean(loss_list),np.mean(acc_list))
if __name__ == '__main__':
# for i in range(8):
# train(i)
evol()
本文地址:https://blog.csdn.net/xiaoxiaowantong/article/details/107434374
上一篇: QQ群营销:无需软件群发图文广告链接技巧
下一篇: 斗地主发牌系统