python opencv 人脸检测-haar,dlib,dnn
程序员文章站
2022-05-19 11:24:22
python opencv 人脸检测一. Haar二. dlib三. dnn模块一. Haarimport cv2cam = cv2.VideoCapture(0)face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# face_detector = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')while(True):...
一. Haar
import cv2
cam = cv2.VideoCapture(0)
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# face_detector = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
while(True):
ret, img = cam.read() #读取摄像头
if not ret:break
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #图片灰度
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
cv2.imshow('image', img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
二. dlib
import cv2
import dlib
cam = cv2.VideoCapture(0)
detector = dlib.get_frontal_face_detector()#加载识别器
while(True):
ret, img = cam.read() #读取摄像头
if not ret:break
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #图片灰度
rects = detector(gray, 0)#获取识别结果
for i in range(len(rects)): #框选人脸
x = rects[i].left()
y= rects[i].top()
w = rects[i].width()
h = rects[i].height()
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
cv2.imshow('image', img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
三. dnn模块
模型下载https://download.csdn.net/download/qq_26696715/12635947
import cv2
import numpy as np
# 定义相关的路径参数
modelPath = "opencv_face_detector_uint8.pb"
weightPath = "opencv_face_detector.pbtxt"
# 置信度参数,高于此数才认为是人脸,可调
confidence = 0.3
font = cv2.FONT_HERSHEY_SIMPLEX
cam = cv2.VideoCapture(0)
net = cv2.dnn.readNetFromTensorflow(modelPath, weightPath)
while True:
ret, img =cam.read()
(h, w) = img.shape[:2] # 获取图像的高和宽,用于画图
blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 1.0,(300, 300), (104.0, 177.0, 123.0))
# blobFromImage待研究
net.setInput(blob)
# 预测结果
detections = net.forward()
# 在原图加上标签和框
for i in range(0, detections.shape[2]):
# 获得置信度
res_confidence = detections[0, 0, i, 2]
# 过滤掉低置信度的像素
if res_confidence > confidence:
# 获得框的位置
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# 在图片上写上标签
text = "{:.2f}%".format(res_confidence * 100)
# 如果检测脸部在左上角,则把标签放在图片内,否则放在图片上面
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(img, (startX, startY), (endX, endY),(0, 255, 0), 2)
cv2.putText(img, text, (startX, y),cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
cv2.imshow('camera',img)
k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
cv2.destroyAllWindows()
本文地址:https://blog.csdn.net/qq_26696715/article/details/107435511
上一篇: 媒体是这么被营销人给免费玩转的
推荐阅读
-
Android 中使用 dlib+opencv 实现动态人脸检测功能
-
基于jupyter notebook的python编程(Win10通过OpenCv-3.4.1进行人脸口罩数据集的模型训练并进行戴口罩识别检测)
-
Python+OpenCV人脸检测原理及示例详解
-
python opencv人脸检测提取及保存方法
-
python版opencv摄像头人脸实时检测方法
-
python 3利用Dlib 19.7实现摄像头人脸检测特征点标定
-
python利用OpenCV2实现人脸检测
-
Python基于OpenCV实现视频的人脸检测
-
python opencv 人脸检测-haar,dlib,dnn
-
python+opencv3.3 人脸检测