TensorFlow实现模型评估
程序员文章站
2022-05-18 22:36:28
我们需要评估模型预测值来评估训练的好坏。
模型评估是非常重要的,随后的每个模型都有模型评估方式。使用tensorflow时,需要把模型评估加入到计算图中,然后在模型...
我们需要评估模型预测值来评估训练的好坏。
模型评估是非常重要的,随后的每个模型都有模型评估方式。使用tensorflow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估。
在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试、提高或者改变整个模型。但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它。
训练模型之后,需要定量评估模型的性能如何。在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集。
想评估一个模型时就得使用大批量数据点。如果完成批量训练,我们可以重用模型来预测批量数据点。但是如果要完成随机训练,就不得不创建单独的评估器来处理批量数据点。
分类算法模型基于数值型输入预测分类值,实际目标是1和0的序列。我们需要度量预测值与真实值之间的距离。分类算法模型的损失函数一般不容易解释模型好坏,所以通常情况是看下准确预测分类的结果的百分比。
不管算法模型预测的如何,我们都需要测试算法模型,这点相当重要。在训练数据和测试数据上都进行模型评估,以搞清楚模型是否过拟合。
# tensorflowm模型评估 # # this code will implement two models. the first # is a simple regression model, we will show how to # call the loss function, mse during training, and # output it after for test and training sets. # # the second model will be a simple classification # model. we will also show how to print percent # classified correctly during training and after # for both the test and training sets. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 创建计算图 sess = tf.session() # 回归例子: # we will create sample data as follows: # x-data: 100 random samples from a normal ~ n(1, 0.1) # target: 100 values of the value 10. # we will fit the model: # x-data * a = target # 理论上, a = 10. # 声明批量大小 batch_size = 25 # 创建数据集 x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[none, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[none, 1], dtype=tf.float32) # 八二分训练/测试数据 train/test = 80%/20% train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=false) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 创建变量 (one model parameter = a) a = tf.variable(tf.random_normal(shape=[1,1])) # 增加操作到计算图 my_output = tf.matmul(x_data, a) # 增加l2损失函数到计算图 loss = tf.reduce_mean(tf.square(my_output - y_target)) # 创建优化器 my_opt = tf.train.gradientdescentoptimizer(0.02) train_step = my_opt.minimize(loss) # 初始化变量 init = tf.global_variables_initializer() sess.run(init) # 迭代运行 # 如果在损失函数中使用的模型输出结果经过转换操作,例如,sigmoid_cross_entropy_with_logits()函数, # 为了精确计算预测结果,别忘了在模型评估中也要进行转换操作。 for i in range(100): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%25==0: print('step #' + str(i+1) + ' a = ' + str(sess.run(a))) print('loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}))) # 评估准确率(loss) mse_test = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) mse_train = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) print('mse on test:' + str(np.round(mse_test, 2))) print('mse on train:' + str(np.round(mse_train, 2))) # 分类算法案例 # we will create sample data as follows: # x-data: sample 50 random values from a normal = n(-1, 1) # + sample 50 random values from a normal = n(1, 1) # target: 50 values of 0 + 50 values of 1. # these are essentially 100 values of the corresponding output index # we will fit the binary classification model: # if sigmoid(x+a) < 0.5 -> 0 else 1 # theoretically, a should be -(mean1 + mean2)/2 # 重置计算图 ops.reset_default_graph() # 加载计算图 sess = tf.session() # 声明批量大小 batch_size = 25 # 创建数据集 x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(2, 1, 50))) y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50))) x_data = tf.placeholder(shape=[1, none], dtype=tf.float32) y_target = tf.placeholder(shape=[1, none], dtype=tf.float32) # 分割数据集 train/test = 80%/20% train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=false) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 创建变量 (one model parameter = a) a = tf.variable(tf.random_normal(mean=10, shape=[1])) # add operation to graph # want to create the operstion sigmoid(x + a) # note, the sigmoid() part is in the loss function my_output = tf.add(x_data, a) # 增加分类损失函数 (cross entropy) xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)) # create optimizer my_opt = tf.train.gradientdescentoptimizer(0.05) train_step = my_opt.minimize(xentropy) # initialize variables init = tf.global_variables_initializer() sess.run(init) # 运行迭代 for i in range(1800): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = [x_vals_train[rand_index]] rand_y = [y_vals_train[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%200==0: print('step #' + str(i+1) + ' a = ' + str(sess.run(a))) print('loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y}))) # 评估预测 # 用squeeze()函数封装预测操作,使得预测值和目标值有相同的维度。 y_prediction = tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, a)))) # 用equal()函数检测是否相等, # 把得到的true或false的boolean型张量转化成float32型, # 再对其取平均值,得到一个准确度值。 correct_prediction = tf.equal(y_prediction, y_target) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) acc_value_test = sess.run(accuracy, feed_dict={x_data: [x_vals_test], y_target: [y_vals_test]}) acc_value_train = sess.run(accuracy, feed_dict={x_data: [x_vals_train], y_target: [y_vals_train]}) print('accuracy on train set: ' + str(acc_value_train)) print('accuracy on test set: ' + str(acc_value_test)) # 绘制分类结果 a_result = -sess.run(a) bins = np.linspace(-5, 5, 50) plt.hist(x_vals[0:50], bins, alpha=0.5, label='n(-1,1)', color='white') plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, label='n(2,1)', color='red') plt.plot((a_result, a_result), (0, 8), 'k--', linewidth=3, label='a = '+ str(np.round(a_result, 2))) plt.legend(loc='upper right') plt.title('binary classifier, accuracy=' + str(np.round(acc_value_test, 2))) plt.show()
输出:
step #25 a = [[ 5.79096079]] loss = 16.8725 step #50 a = [[ 8.36085415]] loss = 3.60671 step #75 a = [[ 9.26366138]] loss = 1.05438 step #100 a = [[ 9.58914948]] loss = 1.39841 mse on test:1.04 mse on train:1.13 step #200 a = [ 5.83126402] loss = 1.9799 step #400 a = [ 1.64923656] loss = 0.678205 step #600 a = [ 0.12520729] loss = 0.218827 step #800 a = [-0.21780498] loss = 0.223919 step #1000 a = [-0.31613481] loss = 0.234474 step #1200 a = [-0.33259964] loss = 0.237227 step #1400 a = [-0.28847221] loss = 0.345202 step #1600 a = [-0.30949864] loss = 0.312794 step #1800 a = [-0.33211425] loss = 0.277342 accuracy on train set: 0.9625 accuracy on test set: 1.0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: Django之Template