欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TensorFlow实现模型评估

程序员文章站 2022-05-18 22:36:28
我们需要评估模型预测值来评估训练的好坏。 模型评估是非常重要的,随后的每个模型都有模型评估方式。使用tensorflow时,需要把模型评估加入到计算图中,然后在模型...

我们需要评估模型预测值来评估训练的好坏。

模型评估是非常重要的,随后的每个模型都有模型评估方式。使用tensorflow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评估。

在训练模型过程中,模型评估能洞察模型算法,给出提示信息来调试、提高或者改变整个模型。但是在模型训练中并不是总需要模型评估,我们将展示如何在回归算法和分类算法中使用它。

训练模型之后,需要定量评估模型的性能如何。在理想情况下,评估模型需要一个训练数据集和测试数据集,有时甚至需要一个验证数据集。

想评估一个模型时就得使用大批量数据点。如果完成批量训练,我们可以重用模型来预测批量数据点。但是如果要完成随机训练,就不得不创建单独的评估器来处理批量数据点。

分类算法模型基于数值型输入预测分类值,实际目标是1和0的序列。我们需要度量预测值与真实值之间的距离。分类算法模型的损失函数一般不容易解释模型好坏,所以通常情况是看下准确预测分类的结果的百分比。

不管算法模型预测的如何,我们都需要测试算法模型,这点相当重要。在训练数据和测试数据上都进行模型评估,以搞清楚模型是否过拟合。

# tensorflowm模型评估
#
# this code will implement two models. the first
# is a simple regression model, we will show how to
# call the loss function, mse during training, and
# output it after for test and training sets.
#
# the second model will be a simple classification
# model. we will also show how to print percent
# classified correctly during training and after
# for both the test and training sets.

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 创建计算图
sess = tf.session()

# 回归例子:
# we will create sample data as follows:
# x-data: 100 random samples from a normal ~ n(1, 0.1)
# target: 100 values of the value 10.
# we will fit the model:
# x-data * a = target
# 理论上, a = 10.

# 声明批量大小
batch_size = 25

# 创建数据集
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[none, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[none, 1], dtype=tf.float32)

# 八二分训练/测试数据 train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=false)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

# 创建变量 (one model parameter = a)
a = tf.variable(tf.random_normal(shape=[1,1]))

# 增加操作到计算图
my_output = tf.matmul(x_data, a)

# 增加l2损失函数到计算图
loss = tf.reduce_mean(tf.square(my_output - y_target))

# 创建优化器
my_opt = tf.train.gradientdescentoptimizer(0.02)
train_step = my_opt.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 迭代运行
# 如果在损失函数中使用的模型输出结果经过转换操作,例如,sigmoid_cross_entropy_with_logits()函数,
# 为了精确计算预测结果,别忘了在模型评估中也要进行转换操作。
for i in range(100):
  rand_index = np.random.choice(len(x_vals_train), size=batch_size)
  rand_x = np.transpose([x_vals_train[rand_index]])
  rand_y = np.transpose([y_vals_train[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%25==0:
    print('step #' + str(i+1) + ' a = ' + str(sess.run(a)))
    print('loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))

# 评估准确率(loss)
mse_test = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
mse_train = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
print('mse on test:' + str(np.round(mse_test, 2)))
print('mse on train:' + str(np.round(mse_train, 2)))

# 分类算法案例
# we will create sample data as follows:
# x-data: sample 50 random values from a normal = n(-1, 1)
#     + sample 50 random values from a normal = n(1, 1)
# target: 50 values of 0 + 50 values of 1.
#     these are essentially 100 values of the corresponding output index
# we will fit the binary classification model:
# if sigmoid(x+a) < 0.5 -> 0 else 1
# theoretically, a should be -(mean1 + mean2)/2

# 重置计算图
ops.reset_default_graph()

# 加载计算图
sess = tf.session()

# 声明批量大小
batch_size = 25

# 创建数据集
x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(2, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))
x_data = tf.placeholder(shape=[1, none], dtype=tf.float32)
y_target = tf.placeholder(shape=[1, none], dtype=tf.float32)

# 分割数据集 train/test = 80%/20%
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=false)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

# 创建变量 (one model parameter = a)
a = tf.variable(tf.random_normal(mean=10, shape=[1]))

# add operation to graph
# want to create the operstion sigmoid(x + a)
# note, the sigmoid() part is in the loss function
my_output = tf.add(x_data, a)

# 增加分类损失函数 (cross entropy)
xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target))

# create optimizer
my_opt = tf.train.gradientdescentoptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# 运行迭代
for i in range(1800):
  rand_index = np.random.choice(len(x_vals_train), size=batch_size)
  rand_x = [x_vals_train[rand_index]]
  rand_y = [y_vals_train[rand_index]]
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  if (i+1)%200==0:
    print('step #' + str(i+1) + ' a = ' + str(sess.run(a)))
    print('loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))

# 评估预测
# 用squeeze()函数封装预测操作,使得预测值和目标值有相同的维度。
y_prediction = tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, a))))
# 用equal()函数检测是否相等,
# 把得到的true或false的boolean型张量转化成float32型,
# 再对其取平均值,得到一个准确度值。
correct_prediction = tf.equal(y_prediction, y_target)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
acc_value_test = sess.run(accuracy, feed_dict={x_data: [x_vals_test], y_target: [y_vals_test]})
acc_value_train = sess.run(accuracy, feed_dict={x_data: [x_vals_train], y_target: [y_vals_train]})
print('accuracy on train set: ' + str(acc_value_train))
print('accuracy on test set: ' + str(acc_value_test))

# 绘制分类结果
a_result = -sess.run(a)
bins = np.linspace(-5, 5, 50)
plt.hist(x_vals[0:50], bins, alpha=0.5, label='n(-1,1)', color='white')
plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, label='n(2,1)', color='red')
plt.plot((a_result, a_result), (0, 8), 'k--', linewidth=3, label='a = '+ str(np.round(a_result, 2)))
plt.legend(loc='upper right')
plt.title('binary classifier, accuracy=' + str(np.round(acc_value_test, 2)))
plt.show()

输出:

step #25 a = [[ 5.79096079]]
loss = 16.8725
step #50 a = [[ 8.36085415]]
loss = 3.60671
step #75 a = [[ 9.26366138]]
loss = 1.05438
step #100 a = [[ 9.58914948]]
loss = 1.39841
mse on test:1.04
mse on train:1.13
step #200 a = [ 5.83126402]
loss = 1.9799
step #400 a = [ 1.64923656]
loss = 0.678205
step #600 a = [ 0.12520729]
loss = 0.218827
step #800 a = [-0.21780498]
loss = 0.223919
step #1000 a = [-0.31613481]
loss = 0.234474
step #1200 a = [-0.33259964]
loss = 0.237227
step #1400 a = [-0.28847221]
loss = 0.345202
step #1600 a = [-0.30949864]
loss = 0.312794
step #1800 a = [-0.33211425]
loss = 0.277342
accuracy on train set: 0.9625
accuracy on test set: 1.0

TensorFlow实现模型评估

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。