欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

[题记-动态规划] 编辑距离 - leetcode

程序员文章站 2022-05-18 18:47:45
题目: 编辑距离 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符删除一个字符替换一个字符 示例 1: 输入:word1 = "horse", word2 = "ros"输出:3解释:ho ......

题目: 编辑距离

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符
 

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')


思路:

定义一个数组 pd[i][j] 表示将 word1 前 i 个 字母替换为 word2 前 j 个字母所用的最少修改次数

若两个单词的字母相等: 则  dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ];

否则在三个操作之间去一个最小的:dp[ i ][ j ] = min( min( dp[ i - 1 ][ j ], dp[ i ][ j - 1 ]  ), dp[ i - 1 ][ j - 1 ] );

 

class solution {
public:
    int mindistance(string word1, string word2) {
        int len1 = word1.size();
        int len2 = word2.size();

        int dp[len1+1][len2+1];
        memset(dp,0,sizeof(dp));


        for( int i = 0; i <= len1; i++ ) dp[i][0] = i;
        for( int j = 0; j <= len2; j++ ) dp[0][j] = j;

        for( int i = 1; i <= len1; i++ ) {
            for( int j = 1; j <= len2; j++ ) {
                if( word1[ i - 1 ] == word2[ j - 1 ] ) {
                    dp[i][j] = dp[i-1][j-1];
                }
                else {
                     dp[i][j] = min( dp[i-1][j-1], min( dp[i-1][j], dp[i][j-1] ) ) + 1;
                }
            }
        }

        return dp[len1][len2];
    }
};

2020-04-06-15:00:52