序列化模块 json pickle shelve
什么是模块:-----------
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
模块分类:1----内置模块
2----扩展模块(https://pypi.org/)
3----自定义模块 自己写的文件
为何要使用模块?
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,
序列化模块:
什么叫序列化??
序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程
通俗点说-------将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。 但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。 你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢? 没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串, 但是你要怎么把一个字符串转换成字典呢? 聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。 eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。 BUT!强大的函数有代价。安全性是其最大的缺点。 想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。 而使用eval就要担这个风险。 所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
序列化的目的
1---->>>>json
适用于不同语言之间,支持的数据类型 str int list dict bool
import json # dic = {"alex": ('women','women','老女人')} # dic2 = {"alex1": ('women','women','老女人')} # dic3 = {"alex2": ('women','women','老女人')} # with open("json-file",mode="w",encoding="utf-8")as f: # s1=json.dumps(dic) # s2=json.dumps(dic2) # s3=json.dumps(dic3) # f.write(s1+"\n") # f.write(s2+"\n") # f.write(s3+"\n") # with open("json-file",mode="r",encoding="utf-8")as f1: # for line in f1: # print(json.loads(line))
写入多数据用dumps 和 loads
dump一次只能读取和写入一个序列化字符串
Serialize obj to a JSON formatted str.(字符串表示的json对象) Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. sort_keys:将数据根据keys的值进行排序。 To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
import json data = {'username':['李华','二愣子'],'sex':'male','age':16} json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False) print(json_dic2)
2------>>>>pickle
用于序列化的两个模块
- json,用于字符串 和 python数据类型间进行转换
- pickle,用于python特有的类型 和 python的数据类型间进行转换
pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)
# dic = {'alex': ('women','women','老女人')} # dic2 = {"alex1": ('women','women','老女人')} # dic3 = {"alex2": ('women','women','老女人')} # with open("pickle_file",mode="wb")as f: # pickle.dump(dic,f) # pickle.dump(dic2,f) # pickle.dump(dic3,f) # with open("pickle_file",mode="rb")as f: # while 1: # try: # print(pickle.load(f)) # except EOFError: # break
注意:文件读写模式问btyes:
3----->>>>shelve
shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。
import shelve f = shelve.open('shelve_file') f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据 f.close() import shelve f1 = shelve.open('shelve_file') existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错 f1.close() print(existing)
这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB
import shelve f = shelve.open('shelve_file', flag='r') existing = f['key'] f.close() print(existing)
由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。
import shelve f1 = shelve.open('shelve_file') print(f1['key']) f1['key']['new_value'] = 'this was not here before' f1.close() f2 = shelve.open('shelve_file', writeback=True) print(f2['key']) f2['key']['new_value'] = 'this was not here before' f2.close()
writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。
推荐阅读
-
Python开发之序列化与反序列化:pickle、json模块使用详解
-
python基础(20):序列化、json模块、pickle模块
-
Python学习 :json、pickle&shelve 模块
-
序列化模块 json pickle shelve
-
Python 序列化模块(json,pickle,shelve) 百日筑基之得气(三)
-
Python学习笔记:json模块和pickle模块
-
python基础学习17----json&pickle&shelve
-
Python os、sys、pickle、json等模块
-
Python-序列化\反序列化以及json、pickle,hashlib模块
-
第二十二天- 序列化 pickle json shelve