欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

序列化模块 json pickle shelve

程序员文章站 2022-05-18 18:26:15
什么是模块: 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。 模块分类:1 内置模块 2 扩展模块(https://pypi.org/) 3 自定义模块 自己写的文件 为何要使用模块? 如果你退出python解释器然后重新进入,那么你之前定义的函 ......

什么是模块:-----------

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

模块分类:1----内置模块

     2----扩展模块(https://pypi.org/)

               3----自定义模块     自己写的文件

为何要使用模块?

   如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

    随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,

序列化模块:

什么叫序列化??

 

序列化 (Serialization)将对象的状态信息转换为可以存储或传输的形式的过程

通俗点说-------将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

序列化模块  json  pickle   shelve
比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)
为什么要有序列化

序列化的目的

1、以某种存储形式使自定义;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
序列化模块  json  pickle   shelve

1---->>>>json

适用于不同语言之间,支持的数据类型   str  int   list   dict   bool 

 

序列化模块  json  pickle   shelve
import json
# dic = {"alex": ('women','women','老女人')}
# dic2 = {"alex1": ('women','women','老女人')}
# dic3 = {"alex2": ('women','women','老女人')}
# with open("json-file",mode="w",encoding="utf-8")as f:
#     s1=json.dumps(dic)
#     s2=json.dumps(dic2)
#     s3=json.dumps(dic3)
#     f.write(s1+"\n")
#     f.write(s2+"\n")
#     f.write(s3+"\n")
# with open("json-file",mode="r",encoding="utf-8")as f1:
#     for line in f1:
#         print(json.loads(line))
json文件多数据操作

写入多数据用dumps 和 loads

dump一次只能读取和写入一个序列化字符串

序列化模块  json  pickle   shelve
Serialize obj to a JSON formatted str.(字符串表示的json对象) 
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key 
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。) 
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse). 
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity). 
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json 
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。 
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError. 
sort_keys:将数据根据keys的值进行排序。 
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.
其他参数说明
序列化模块  json  pickle   shelve
import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)
json的格式化输出

 

2------>>>>pickle

 

用于序列化的两个模块

 

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

 

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

 

 

序列化模块  json  pickle   shelve
# dic = {'alex': ('women','women','老女人')}
# dic2 = {"alex1": ('women','women','老女人')}
# dic3 = {"alex2": ('women','women','老女人')}
# with open("pickle_file",mode="wb")as f:
#     pickle.dump(dic,f)
#     pickle.dump(dic2,f)
#     pickle.dump(dic3,f)
# with open("pickle_file",mode="rb")as f:
#     while 1:
#         try:
#             print(pickle.load(f))
#         except EOFError:
#             break
pickle文件多数据操作

注意:文件读写模式问btyes:

 

3----->>>>shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

 

序列化模块  json  pickle   shelve
import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'}  #直接对文件句柄操作,就可以存入数据
f.close()

import shelve
f1 = shelve.open('shelve_file')
existing = f1['key']  #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)
View Code

 

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

 

 

序列化模块  json  pickle   shelve
import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)
View Code

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

 

序列化模块  json  pickle   shelve
import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close()

f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()
View Code

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。