欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

Ubuntu18.04安装完应该做的一些事 显卡驱动安装和cuda8.0

程序员文章站 2022-05-18 10:47:50
博主装Ubuntu18.04主要是为了用于跑深度学习,所以我们先来搞搞gcc环境 第一步:安装多版本gcc、g++可切换 切换版本命令 根据自己想要的环境选择 第二步:准备安装显卡驱动和cuda8.0等相关文件 最新cuda8.0 及其补丁 cuda_8.0.61.2_linux.run cuda_ ......

  博主装ubuntu18.04主要是为了用于跑深度学习,所以我们先来搞搞gcc环境

第一步:安装多版本gcc、g++可切换

sudo apt-get install gcc-4.8 gcc-4.8-multilib
sudo apt-get install g++-4.8 g++-4.8-multilib
sudo apt-get install gcc-5 gcc-5-multilib
sudo apt-get install g++-5 g++-5-multilib
sudo apt-get install gcc-6 gcc-6-multilib
sudo apt-get install g++-6 g++-6-multilib
sudo apt-get install gcc-7 gcc-7-multilib
sudo apt-get install g++-7 g++-7-multilib
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 48
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6 60
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 70
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 48
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-6 60
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 70

  切换版本命令

sudo update-alternatives --config gcc 
sudo update-alternatives --config g++

  根据自己想要的环境选择

第二步:准备安装显卡驱动和cuda8.0等相关文件

  最新cuda8.0 及其补丁
  cuda_8.0.61.2_linux.run 
  cuda_8.0.61_375.26_linux.run
  最新支持cuda8.0的cudnn
  libcudnn7_7.1.4.18-1+cuda8.0_amd64.deb
  libcudnn7-dev_7.1.4.18-1+cuda8.0_amd64.deb
  libcudnn7-doc_7.1.4.18-1+cuda8.0_amd64.deb
  cuda8.0 安装包解压文件
  /001/installutils.pm(从cuda_8.0.61.2_linux.run中解压出来的文件,后面会讲到)
第三步:安装显卡驱动
  • 1、开机 nomodeset 进入系统
    • 开机进引导界面 第一项 按e 进入配置启动
    • 在quiet splash - - -后加上 nomodeset
    • 按f10 保存 进入系统
quiet splash - - -
quiet splash nomodeset
  • 2、禁用系统自带nvidia驱动
sudo vim /etc/modprobe.d/blacklist.conf
# 在文件尾加入
blacklist nouveau
options nouveau modeset=0
# 保存并退出 执行下面命令 更新引导
sudo update-initramfs –u
  • 3、安装 nvidia 驱动
# 切换gcc 版本 到gcc-5 以上 (使用高版本感觉会好一点)
# 查看支持的驱动版本
ubuntu-drivers devices
# 安装驱动
sudo ubuntu-drivers autoinstall
# 根据查询的版本安装比较保险 例如
sudo apt-get install nvidia-driver-390
# 装驱动 需要关闭 安全启动
  • 5、重启系统
sudo reboot
# 查看nvidia驱动 使用情况
nvidia-smi
  • 6、安装cuda8.0
    • 安装依赖
  • sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
    • 切换gcc版本到 4.8
  • sudo update-alternatives --config gcc
    • 解压cuda8.0
  • sh cuda_8.0.61_375.26_linux.run --noexec --target 001 
    # 将runfile文件解压并且放到001文件夹中
    # 将instalutil.pm 拷贝到 /etc/perl/
    sudo cp instalutil.pm /etc/perl/
    • 安装cuda8.0及补丁
  • # 可选 加运行权限 
    chmod u+x cuda_8.0.61_375.26_linux.run
    chmod u+x cuda_8.0.61.2_linux.run
    # 运行
    sudo ./chmod u+x cuda_8.0.61_375.26_linux.run
    
    do you accept the previously read eula?
    accept/decline/quit: accept
    
    you are attempting to install on an unsupported configuration. do you wish to continue?
    (y)es/(n)o [ default is no ]: y
    
    install nvidia accelerated graphics driver for linux-x86_64 375.26?
    (y)es/(n)o/(q)uit: n
    
    install the cuda 8.0 toolkit?
    (y)es/(n)o/(q)uit: y
    
    enter toolkit location
    [ default is /usr/local/cuda-8.0 ]:
    
    do you want to install a symbolic link at /usr/local/cuda?
    (y)es/(n)o/(q)uit: y
    
    install the cuda 8.0 samples?
    (y)es/(n)o/(q)uit: y
    
    enter cuda samples location
    [ default is /home/deep ]:
    
    # 安装补丁
    sudo ./cuda_8.0.61.2_linux.run
    • 添加环境变量
  • cd 
    vim .bashrc
    # 添加到文件尾部
    export path=/usr/local/cuda-8.0/bin:$path 
    export ld_library_path=/usr/local/cuda-8.0/lib64$ld_library_path
    # 保存 退出
    sudo su
    source .bashrc
    • 重启系统
  • sudo reboot
    • 安装cudnn
  • sudo dpkg -i libcudnn7_7.1.4.18-1+cuda8.0_amd64.deb
    sudo dpkg -i libcudnn7-dev_7.1.4.18-1+cuda8.0_amd64.deb
    sudo dpkg -i libcudnn7-doc_7.1.4.18-1+cuda8.0_amd64.deb
    • 查看cuda版本和cudnn版本
  • # cuda 版本
    cat /usr/local/cuda/version.txt
    # cudnn 版本
    cat /usr/include/x86_64-linux-gnu/cudnn_v7.h | grep cudnn_major -a 2
    • 编译
  • # 不用编译全部 只编译devicequery
    cd /home/deep/nvidia_cuda-8.0_samples/1_utilities/devicequery
    make
    • 测试
  • ./devicequery
    
    # 出现显卡信息
    ./devicequery starting...
    
    cuda device query (runtime api) version (cudart static linking)
    
    detected 1 cuda capable device(s)
    
    device 0: "geforce gtx 1080"
      cuda driver version / runtime version          9.1 / 8.0
      cuda capability major/minor version number:    6.1
      total amount of global memory:                 8116 mbytes (8510701568 bytes)
      (20) multiprocessors, (128) cuda cores/mp:     2560 cuda cores
      gpu max clock rate:                            1734 mhz (1.73 ghz)
      memory clock rate:                             5005 mhz
      memory bus width:                              256-bit
      l2 cache size:                                 2097152 bytes
      maximum texture dimension size (x,y,z)         1d=(131072), 2d=(131072, 65536), 3d=(16384, 16384, 16384)
      maximum layered 1d texture size, (num) layers  1d=(32768), 2048 layers
      maximum layered 2d texture size, (num) layers  2d=(32768, 32768), 2048 layers
      total amount of constant memory:               65536 bytes
      total amount of shared memory per block:       49152 bytes
      total number of registers available per block: 65536
      warp size:                                     32
      maximum number of threads per multiprocessor:  2048
      maximum number of threads per block:           1024
      max dimension size of a thread block (x,y,z): (1024, 1024, 64)
      max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
      maximum memory pitch:                          2147483647 bytes
      texture alignment:                             512 bytes
      concurrent copy and kernel execution:          yes with 2 copy engine(s)
      run time limit on kernels:                     yes
      integrated gpu sharing host memory:            no
      support host page-locked memory mapping:       yes
      alignment requirement for surfaces:            yes
      device has ecc support:                        disabled
      device supports unified addressing (uva):      yes
      device pci domain id / bus id / location id:   0 / 1 / 0
      compute mode:
         < default (multiple host threads can use ::cudasetdevice() with device simultaneously) >
    
    devicequery, cuda driver = cudart, cuda driver version = 9.1, cuda runtime version = 8.0, numdevs = 1, device0 = geforce gtx 1080
    result = pass

     

如果出现相应的显卡信息表示安装成功了。