欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【Pytorch框架实战】之Mask-Rcnn实例分割

程序员文章站 2022-05-18 10:24:44
...

【Pytorch框架实战】之Mask-Rcnn实例分割

一、内容

上次讲了Faster-RCNN网络,其主要由backbone的卷积网络、实现Boxes选择的区域推荐网络RPN、最终的分类回归。何凯明大作Mask-RCNN简单说就是在RPN之后得到对齐ROI对齐区域,完成了一个全卷积的像素分割分支,Mask-RCNN的网络结构如下:
【Pytorch框架实战】之Mask-Rcnn实例分割
boxes:预测矩形的左上角与右下角坐标(x1,y1,x2,y2) [Nx4]
labels: 预测每个对象标签
scores:预测每个对象的得分,在0~1之间,大于阈值T的即为预测输出
masks:预测每个实例对象的mask,mask>0.5作为最终分类mask。[Nx1xHxW]

二、代码

import torch
import cv2 as cv
import torchvision.transforms as transforms
import torchvision
import numpy as np

# 调用模型
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
model.eval()

# 预处理
preprocess = transforms.Compose([transforms.ToTensor()])

# 使用GPU
train_on_gpu = torch.cuda.is_available()

if train_on_gpu:
    model.cuda()

COCO_INSTANCE_CATEGORY_NAMES = [
    '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
    'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
    'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
    'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
    'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
    'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
    'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
    'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
    'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
    'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
    'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


if __name__ == "__main__":
    frame = cv.imread("demo_img13.jpg")
    blob = preprocess(frame)
    c, h, w = blob.shape
    input_x = blob.view(1, c, h, w)
    output = model(input_x.cuda())[0]
    boxes = output['boxes'].cpu().detach().numpy()
    scores = output['scores'].cpu().detach().numpy()
    labels = output['labels'].cpu().detach().numpy()
    masks = output['masks'].cpu().detach().numpy()
    index = 0
    color_mask = np.zeros((h, w, c), dtype=np.uint8)
    mv = cv.split(color_mask)
    # 循环遍历
    for x1, y1, x2, y2 in boxes:
        if scores[index] > 0.5:
            cv.rectangle(frame, (np.int32(x1), np.int32(y1)),
                         (np.int32(x2), np.int32(y2)), (0, 255, 255), 1, 8, 0)
            mask = np.squeeze(masks[index] > 0.5)
            np.random.randint(0, 256)
            mv[2][mask == 1], mv[1][mask == 1], mv[0][mask == 1] = \
                [np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)]
            label_id = labels[index]
            label_txt = COCO_INSTANCE_CATEGORY_NAMES[label_id]
            cv.putText(frame, label_txt, (np.int32(x1), np.int32(y1)), cv.FONT_HERSHEY_PLAIN, 1, (0, 0, 255), 1)
        index += 1
    color_mask = cv.merge(mv)
    result = cv.addWeighted(frame, 0.5, color_mask, 0.5, 0)
    cv.imwrite("demo_img13_test.png", result)

三、结果

【Pytorch框架实战】之Mask-Rcnn实例分割
【Pytorch框架实战】之Mask-Rcnn实例分割
【Pytorch框架实战】之Mask-Rcnn实例分割

相关标签: Pytorch框架