欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

leetcode 1368. Minimum Cost to Make at Least One Valid Path in a Grid

程序员文章站 2022-05-18 09:28:02
...

Given a m x n grid. Each cell of the grid has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j] can be:

  • 1 which means go to the cell to the right. (i.e go from grid[i][j] to grid[i][j + 1])
  • 2 which means go to the cell to the left. (i.e go from grid[i][j] to grid[i][j - 1])
  • 3 which means go to the lower cell. (i.e go from grid[i][j] to grid[i + 1][j])
  • 4 which means go to the upper cell. (i.e go from grid[i][j] to grid[i - 1][j])

Notice that there could be some invalid signs on the cells of the grid which points outside the grid.

You will initially start at the upper left cell (0,0). A valid path in the grid is a path which starts from the upper left cell (0,0) and ends at the bottom-right cell (m - 1, n - 1) following the signs on the grid. The valid path doesn't have to be the shortest.

You can modify the sign on a cell with cost = 1. You can modify the sign on a cell one time only.

Return the minimum cost to make the grid have at least one valid path.

 

Example 1:

leetcode 1368. Minimum Cost to Make at Least One Valid Path in a Grid

 

Input: grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
Output: 3
Explanation: You will start at point (0, 0).
The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3)
The total cost = 3.

Example 2:

leetcode 1368. Minimum Cost to Make at Least One Valid Path in a Grid

Input: grid = [[1,1,3],[3,2,2],[1,1,4]]
Output: 0
Explanation: You can follow the path from (0, 0) to (2, 2).

Example 3:

leetcode 1368. Minimum Cost to Make at Least One Valid Path in a Grid

 

Input: grid = [[1,2],[4,3]]
Output: 1

Example 4:

Input: grid = [[2,2,2],[2,2,2]]
Output: 3

Example 5:

Input: grid = [[4]]
Output: 0

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100

题目根据单元格内的指示牌行走。求最少更改几次指示牌可以从grid[0][0]走到grid[-1][-1](右下角)

简单题。DP,一轮一轮的计算更改step次能走到的所有点。代码如下:

class Solution(object):
    def minCost(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        row = len(grid)
        col = len(grid[0])
        status = [[False for _ in range(col)] for _ in range(row)]
        l = [[0,0]]
        step = 0
        while True:
            t = []
            for x,y in l: # 遍历所有可以走到的位置
                while not status[x][y]:
                    status[x][y] = True
                    d = grid[x][y]
                    t.append([x,y])
                    if d == 1 and y < col-1:
                        y += 1
                    elif d == 2 and y > 0:
                        y -= 1
                    elif d == 3 and x < row-1:
                        x += 1
                    elif d == 4 and x > 0:
                        x -= 1
            if status[-1][-1]:#没有走到
                return step
            step += 1 #增加一次更改的机会,将这一轮新增的点上下左右的点加入到下一轮起点列表中
            l = []
            for x,y in t:
                if x > 0:
                    l.append([x-1,y])
                if x < row-1:
                    l.append([x+1,y])
                if y > 0:
                    l.append([x,y-1])
                if y < col-1:
                    l.append([x,y+1])
            

 

相关标签: leetcode