欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU 3046 Pleasant sheep and big big wolf(SAP,Dinic模板)

程序员文章站 2022-05-18 08:08:26
...

题目地址
题意:狼要吃羊,1的位置是羊的位置,2的位置是狼的位置,0是你可以放栅栏的位置,如果羊被栅栏围到了则狼就吃不掉羊了。问要用的栅栏最少是多少?
思路:让狼与源点连,羊与汇点连,可以立栅栏的位置与周围连上一条容量为1的边,这样就转化为最小割的问题了。只要源点和汇点不连通了就隔离开来了。因为是模板题,我用了两种方法写。
Dinic:

#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#define N 50000
#define M 1000000
#define LL __int64
#define inf 0x3f3f3f3f
#define lson l,mid,ans<<1
#define rson mid+1,r,ans<<1|1
#define getMid (l+r)>>1
#define movel ans<<1
#define mover ans<<1|1
using namespace std;
const LL mod = 1000000007;
int head[N], level[N];
int n, m, cnt;
struct node {
    int to;
    int cap;//剩余流量
    int next;
}edge[2 * M];
int mapp[210][210];
int dir[4][2] = { { 1,0 },{ 0,1 },{ -1,0 },{ 0,-1 } };
bool check(int x, int y) {// 判断是否越界
    if (x >= 0 && x < n && y >= 0 && y < m)
        return true;
    return false;
}
struct Dinic {
    void init() {
        memset(head, -1, sizeof(head));
        cnt = 0;
    }
    void add(int u, int v, int cap) {//有向图
        edge[cnt].to = v, edge[cnt].cap = cap, edge[cnt].next = head[u], head[u] = cnt++;
        edge[cnt].to = u, edge[cnt].cap = 0, edge[cnt].next = head[v], head[v] = cnt++;//反向边
    }
    bool bfs(int s, int t) {//建立分层图
        memset(level, -1, sizeof(level));
        queue<int>q;
        level[s] = 0;//源点的层次最高
        q.push(s);
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int i = head[u]; i != -1; i = edge[i].next) {
                int v = edge[i].to;
                if (edge[i].cap > 0 && level[v] < 0) {
                    level[v] = level[u] + 1;
                    q.push(v);
                    if (v == t) {
                        return true;
                    }
                }
            }
        }
        return false;
    }
    int dfs(int u, int t, int num) {//找增广路
        if (u == t || num == 0) {//找到了汇点返回当前的最小值,在这条路径上分别减去最小值
            return num;
        }
        int ans = num;
        for (int i = head[u]; i != -1; i = edge[i].next) {
            int v = edge[i].to;
            if (edge[i].cap > 0 && level[u] < level[v]) {
                int d = dfs(v, t, min(num, edge[i].cap));
                ans -= d;
                edge[i].cap -= d;
                edge[i ^ 1].cap += d;//反向边加值
                if (ans == 0)return num;
            }
        }
        return num - ans;
    }
    int dinic(int s, int t) {//源点和汇点
        int sum = 0, num;
        while (bfs(s, t)) {
            sum += dfs(s, t, inf);
        }
        return sum;
    }
}DC;
int main() {
    cin.sync_with_stdio(false);
    int Case = 1;
    while (cin >> n >> m) {
        DC.init();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cin >> mapp[i][j];
            }
        }
        int s = n*m;
        int t = n*m + 1;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int pos = i*m + j;
                if (mapp[i][j] == 1) {
                    DC.add(pos, t, inf);
                }
                else if (mapp[i][j] == 2) {
                    DC.add(s, pos, inf);
                }
                for (int k = 0; k < 4; k++) {
                    int x = i + dir[k][0];
                    int y = j + dir[k][1];
                    if (check(x, y)) {
                        DC.add(pos, x*m + y, 1);
                    }
                }
            }
        }
        cout << "Case " << Case++ << ":" << endl;
        cout << DC.dinic(s, t) << endl;
    }
    return 0;
}

SAP:

#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#define N 40010
#define M 800010
#define LL __int64
#define inf 0x3f3f3f3f
#define lson l,mid,ans<<1
#define rson mid+1,r,ans<<1|1
#define getMid (l+r)>>1
#define movel ans<<1
#define mover ans<<1|1
using namespace std;
const LL mod = 1000000007;
int mapp[210][210];
int head[N];
int n, m, cnt;
struct node {
    int to;
    int cap;//剩余流量
    int next;
}edge[2 * M];//因为加了正反两条边,所以要乘二
bool vis[N];
int len[N];
int gap[N];
int pre[N];
int curedge[N];
int dir[4][2] = { { 1,0 },{ 0,1 },{ -1,0 },{ 0,-1 } };
bool check(int x, int y) {// 判断是否越界
    if (x >= 0 && x < n && y >= 0 && y < m)
        return true;
    return false;
}
struct Sap {
    void init() {
        memset(head, -1, sizeof(head));
        cnt = 0;
    }
    void add(int u, int v, int cap) {//有向图
        edge[cnt].to = v, edge[cnt].cap = cap, edge[cnt].next = head[u], head[u] = cnt++;
        edge[cnt].to = u, edge[cnt].cap = 0, edge[cnt].next = head[v], head[v] = cnt++;//反向边
    }
    int max_flow(int s, int t, int n){//n为总点数个数
        int cur_flow = 0, flow_ans = 0, i, u, neck, tmp;
        memset(len, 0, sizeof(len));
        memset(gap, 0, sizeof(gap));
        memset(pre, -1, sizeof(pre));
        for (i = 0; i <= n; i++)
            curedge[i] = head[i];
        gap[0] = n + 1;
        u = s;
        while (len[s] < n + 1) {
            if (u == t) {
                cur_flow = inf;
                for (i = s; i != t; i = edge[curedge[i]].to) {
                    if (cur_flow > edge[curedge[i]].cap)
                        cur_flow = edge[curedge[i]].cap, neck = i;
                }
                for (i = s; i != t; i = edge[curedge[i]].to)
                {
                    tmp = curedge[i];
                    edge[tmp].cap -= cur_flow;
                    edge[tmp ^ 1].cap += cur_flow;
                }
                flow_ans += cur_flow;
                u = neck;
            }
            for (i = curedge[u]; i != -1; i = edge[i].next)
                if (edge[i].cap&&len[u] == len[edge[i].to] + 1)
                    break;

            if (i != -1) {
                curedge[u] = i;
                pre[edge[i].to] = u;
                u = edge[i].to;
            }
            else {
                if (0 == --gap[len[u]])
                    break;
                curedge[u] = head[u];
                for (tmp = n + 5, i = head[u]; i != -1; i = edge[i].next)
                    if (edge[i].cap)
                        tmp = min(tmp, len[edge[i].to]);
                len[u] = tmp + 1;
                ++gap[len[u]];
                if (u != s)
                    u = pre[u];
            }
        }
        return flow_ans;
    }
}sap;
int main() {
    cin.sync_with_stdio(false);
    int Case = 1;
    while (cin >> n >> m) {
        sap.init();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cin >> mapp[i][j];
            }
        }
        int s = n*m;
        int t = n*m + 1;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int pos = i*m + j;
                if (mapp[i][j] == 1) {
                    sap.add(pos, t, inf);
                }
                else if (mapp[i][j] == 2) {
                    sap.add(s, pos, inf);
                }
                for (int k = 0; k < 4; k++) {
                    int x = i + dir[k][0];
                    int y = j + dir[k][1];
                    if (check(x, y)) {
                        sap.add(pos, x*m + y, 1);
                    }
                }
            }
        }
        cout << "Case " << Case++ << ":" << endl;
        cout<< sap.max_flow(s, t, t) << endl;
    }
    return 0;
}
相关标签: sap